当前位置:主页 > 科技论文 > 机械论文 >

基于动压反馈的气动负载模拟器控制策略研究

发布时间:2018-04-22 07:39

  本文选题:气动力伺服系统频率特性 + 间隙机构 ; 参考:《哈尔滨工业大学》2012年硕士论文


【摘要】:气动负载模拟器作为近几年新起的负载模拟器,是一种典型的被动式力伺服系统。气动系统作为加载部分其主要目的为模拟飞行器中舵面机构在摆动时所受的空气力矩。舵机的主动运动往往会对气动系统产生位置干扰,进而引起多余力,选择气动系统作为加载装置可以大幅降低多余力的影响,但是由于气动系统的非线性,使的气动力控制伺服系统较其他形式加载装置频率特性差,所以减少力控制信号的相位滞后提高系统动态特性成为本文主要的工作。 首先建立气动系统数学模型,采用机理建模的方式得到气动系统的传递函数,分析得出系统达不到预期控制目标的主要原因是加载系统在舵机系统的强干扰下实行加载所导致。由于气体的可压缩性,使干扰作用在实际中体现在舵机运动导致的两腔压力变化。考虑到速度补偿不容易实现的特点,提出采用动压反馈,补偿位置造成的干扰,根据补偿的力与位置变化产生的力相等推导出动压反馈的传递函数。在仿真和实验中主要调节动压反馈系数的大小。 建立伺服电机的数学模型,合理设置参数。通过matlab对电机动态特性进行仿真。通过Amesim建立了气动负载模拟器的实际模型,分别采用PID和PID+动压反馈的控制方法,得出动压反馈优于PID调节。另外分析了影响系统动态特性的其他因素包括比例阀和气源压力的选择。 采用Adams对负载模拟器机械结构进行动力学分析,分析机械结构间隙对加载力曲线的影响,得到不同间隙下的摇杆位移、速度和加速度曲线,得到合理间隙值,为实验环节做下准备。同时针对伺服电机在低频时动态特性不足,设计出惯量轮,借此在实验中提升电机动态特性。另外合理选择整个实验台的底座,采用较大的底座惯量,提高整个实验台的刚性。 搭建气动负载模拟器特性实验台,实验以Matlab中xpc-target工具建立软件系统,采用上下位机的形式控制板卡进行数据采集与实时控制。采用PID和PID+动压反馈两种控制方法。同时验证了机械结构优化设计对力曲线的影响,,测试结果表明实验曲线与仿真曲线基本一致。
[Abstract]:As a new load simulator in recent years, pneumatic load simulator is a typical passive force servo system. As the loading part, the aerodynamic system is designed to simulate the air torque of the rudder mechanism in the aircraft when it is swinging. The active motion of the steering gear often produces the position interference to the pneumatic system, and then causes the redundant force. Choosing the pneumatic system as the loading device can greatly reduce the influence of the redundant force, but because of the nonlinearity of the pneumatic system, The frequency characteristic of the pneumatic control servo system is worse than that of other loading devices, so reducing the phase lag of the force control signal and improving the dynamic characteristics of the system become the main work in this paper. Firstly, the mathematical model of pneumatic system is established, and the transfer function of pneumatic system is obtained by mechanism modeling. It is concluded that the main reason that the system can not achieve the expected control goal is the loading of the loading system under the strong disturbance of the steering gear system. Because of the compressibility of the gas, the interference is reflected in the pressure change of the two cavities caused by the motion of the steering gear. Considering the fact that velocity compensation is not easy to be realized, it is proposed that dynamic pressure feedback is used to compensate the interference caused by position, and the transfer function of dynamic pressure feedback is deduced according to the force produced by the compensated force and the change of position. The dynamic pressure feedback coefficient is mainly regulated in simulation and experiment. The mathematical model of servo motor is established and the parameters are set up reasonably. The dynamic characteristics of the motor are simulated by matlab. The actual model of pneumatic load simulator is established by Amesim. The control methods of PID and PID dynamic pressure feedback are adopted respectively. The result shows that the response pressure feedback is better than the PID regulation. In addition, other factors affecting the dynamic characteristics of the system are analyzed, including the selection of proportional valve and air source pressure. The dynamic analysis of the mechanical structure of the load simulator is carried out by using Adams, and the influence of the gap of the mechanical structure on the loading force curve is analyzed. The displacement, velocity and acceleration curves of the rocker rod under different gaps are obtained, and the reasonable gap values are obtained. Prepare for the experiment. At the same time, the inertia wheel is designed to improve the dynamic characteristics of the servo motor in the experiment. In addition, the base of the whole test platform is reasonably selected, and the rigidity of the whole test platform is improved by adopting the larger inertia of the base. The characteristic test bench of pneumatic load simulator was built. The software system was established by xpc-target tool in Matlab, and the data acquisition and real time control were carried out by the form of upper and lower computer control board. PID and PID dynamic pressure feedback control methods are adopted. At the same time, the effect of mechanical structure optimization design on the force curve is verified. The test results show that the experimental curve is basically consistent with the simulation curve.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH138;V216.8

【参考文献】

相关期刊论文 前10条

1 姚建勇;焦宗夏;;改进型LuGre模型的负载模拟器摩擦补偿[J];北京航空航天大学学报;2010年07期

2 郑春华;;电子设备中接地抗干扰技术[J];电子制作;2003年10期

3 杨庆俊,包钢,聂伯勋,王祖温;比例方向阀控气动缸动力机构建模[J];哈尔滨工业大学学报;2001年04期

4 王燕波,包钢,李军,王祖温;气压垂直伺服定位系统的实验研究[J];机床与液压;2004年05期

5 周毅;刘春辉;孔超;;基于模糊PID控制的气动负载模拟器研究[J];机床与液压;2011年11期

6 续彦芳,崔俊杰,苏铁雄;虚拟样机技术及其在ADAMS中的应用[J];机械管理开发;2005年01期

7 杨俊燕;任家骏;张明;李秀红;吴凤林;;基于MSC.ADAMS软件仿真的关键问题[J];机械管理开发;2008年03期

8 郭杏林;赵子坤;;含间隙柔性曲柄摇杆机构动力学分析[J];机械强度;2010年06期

9 柏艳红;李小宁;;气动位置伺服系统状态反馈控制的改进[J];机械工程学报;2009年08期

10 陈先锋,舒志兵,赵英凯;基于PMSM伺服系统的数学模型及其性能分析[J];机械与电子;2005年01期

相关博士学位论文 前2条

1 王晓雷;气动隔振器及八作动器隔振平台控制问题研究[D];哈尔滨工业大学;2008年

2 张彪;电液负载模拟器多余力矩抑制及其反步自适应控制研究[D];哈尔滨工业大学;2009年



本文编号:1786273

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1786273.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8eb81***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com