一种新型摆线齿轮减速器
本文选题:摆线齿轮减速器 + 针齿 ; 参考:《北京邮电大学》2012年硕士论文
【摘要】:摆线齿轮减速器在高的传动比时,仍具有较高的传动效率,这是一般渐开线行星齿轮减速器所不能做到的。另外在传动过程中,摆线轮主要承受的是压应力,而以渐开线作为齿廓的轮齿主要承受剪应力,这使得摆线减速器的使用寿命高于渐开线。本文首先介绍了国内外相关摆线齿轮减速器的发展现状及其应用,提出了开发新型摆线齿轮减速器的必要性。 首先在分析了双摆线齿轮传动的原理基础上,指出其在传动过程中由于内外摆线轮一摆的长度不相等导致针齿在与内外摆线轮啮合的过程中存在既滚又滑的问题。为了从根本上克服这一问题,本文提出在满足内外摆线轮一摆的长度相等的情况下给内外摆线轮与针齿外缘叠加上小齿,将针齿与内外摆线轮之间的接触变为小齿与小齿之间的啮合,这样既可以消除原有的滑动,还可以省去针轮的保持架,有效的减少减速器的轴向尺寸与零件个数。 然后利用Mathematica软件在内外摆线轮实际齿廓上成功叠加了摆线小齿、圆弧小齿,并将叠加摆线小齿后的曲线坐标值导出到文本文件中。使用Pro/E读取叠加摆线小齿后的数据文件建立相应的三维实体模型。使用Pro/E的参数化建模方法,在内外摆线上叠加了单一的渐开线小齿,建立了简单的三维实体模型,采用ADAMS进行了运动学仿真验证了叠加渐开线小齿的可行性。 参考非圆齿轮的设计方法,分析了在非圆曲线上叠加渐开线小齿的作图法、齿形法线法、解析法与折算齿形法。采用折算齿形法利用Pro/E设计了一套叠加渐开线小齿的减速器三维实体模型,分别计算了内外摆线轮的渐开线轮齿。采用ADAMS建立了虚拟样机进行了运动学分析,验证了采用折算齿形法叠加渐开线小齿的合理性与可靠性。 最后详细设计了两套叠加摆线小齿的减速器,详细绘制了相应的二维工程图,加工出了物理样机,有效的验证了新减速器的可行性,为该新型减速器的进一步研究打下了很好的基础。
[Abstract]:Cycloidal gear reducer still has higher transmission efficiency when the transmission ratio is high, which can not be achieved by the general involute planetary gear reducer. In addition, in the transmission process, the cycloidal gear is mainly subjected to compressive stress, while the involute gear is mainly subjected to shear stress, which makes the cycloid reducer service life longer than involute. This paper first introduces the development and application of cycloidal gear reducer at home and abroad, and puts forward the necessity of developing new cycloidal gear reducer. Firstly, on the basis of analyzing the principle of double cycloid gear transmission, it is pointed out that in the course of transmission, the needle teeth have the problem of rolling and sliding in the course of meshing with the inner and outer cycloid gears due to the unequal length of one pendulum of the inner and outer cycloid wheels. In order to overcome this problem fundamentally, this paper proposes that the outer and outer cycloid wheel should be superimposed on the outer edge of the needle tooth on the condition that the length of the pendulum is equal to that of the inner and outer cycloid wheel. The contact between the pin tooth and the inner and outer cycloid wheel is changed into the meshing between the small tooth and the small tooth, which can not only eliminate the original sliding, but also save the cage of the pin wheel, and effectively reduce the axial dimension of the reducer and the number of parts. Then, the cycloidal teeth and circular arc teeth are successfully superimposed on the actual tooth profiles of the inner and outer cycloidal gears by Mathematica software, and the curvilinear coordinate values after the superposition of the cycloidal teeth are exported to a text file. Using Pro/E to read the data file after superposition cycloid teeth to establish the corresponding three-dimensional solid model. Using the parametric modeling method of Pro/E, a single involute tooth is superimposed on the inner and outer cycloid line, and a simple three-dimensional solid model is established. The feasibility of superimposing involute small tooth is verified by kinematics simulation with ADAMS. Referring to the design method of non-circular gear, the drawing method, tooth shape normal method, analytic method and conversion tooth form method of superimposing involute small teeth on non-circular curve are analyzed. A set of three dimensional solid model of reducer with superimposed involute teeth is designed by using Pro/E method and the involute gear teeth of inner and outer cycloidal gears are calculated respectively. The kinematics analysis of the virtual prototype was carried out by using ADAMS, and the rationality and reliability of superposition involute teeth by the method of converted tooth profile were verified. Finally, two sets of superposition cycloidal gear reducers are designed in detail, and the corresponding two-dimensional engineering drawings are drawn in detail, and the physical prototype is processed, which effectively verifies the feasibility of the new reducer. It lays a good foundation for the further research of the new reducer.
【学位授予单位】:北京邮电大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH132.46
【参考文献】
相关期刊论文 前10条
1 张俊芳,余墨娟,周建军;用于机器人驱动的新型摆线传动技术[J];杭州电子工业学院学报;2002年03期
2 李充宁,周有强;圆弧齿行星减速器的效率计算[J];机械设计;1993年04期
3 吴勤保;李思益;;双摆线钢球减速器的结构及运动原理分析[J];机械设计;2006年06期
4 吴勤保;;双摆线钢球减速器齿廓曲线参数的选择[J];机械设计;2007年07期
5 何卫东,李力行,李欣;机器人用高精度RV减速器中摆线轮的优化新齿形[J];机械工程学报;2000年03期
6 关天民,张东生;摆线针轮行星传动中反弓齿廓研究及其优化设计[J];机械工程学报;2005年01期
7 林菁,王启义,鄂中凯;滚动摩擦摆线行星传动啮合特性研究[J];机械工程学报;1998年02期
8 彭永华;关天民;雷蕾;王广欣;张锡玉;;FA三片摆线轮新型针摆传动系列软件系统的开发[J];机械研究与应用;2006年01期
9 王丽娟;黄清世;邹雯;;齿轮发展研究综述[J];机械研究与应用;2008年01期
10 关天民,雷蕾,孙英时,马英驹,张励忠;FA新型摆线针轮行星传动装置的反求设计[J];中国机械工程;2003年01期
相关博士学位论文 前2条
1 关天民;FA型摆线针轮行星传动齿形优化方法与相关理论的研究[D];大连交通大学;2005年
2 王淑妍;锥形摆线行星传动基础理论及实验研究[D];重庆大学;2008年
相关硕士学位论文 前3条
1 房婷婷;摆线包络行星传动啮合理论研究[D];重庆大学;2007年
2 张桓;平动啮合齿轮减速器机构设计[D];北京邮电大学;2010年
3 吴琦;摆线齿轮减速器[D];北京邮电大学;2010年
,本文编号:1793292
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1793292.html