立式斜流泵主动磁悬浮轴承转子动力系统研究
发布时间:2018-04-26 14:21
本文选题:主动磁轴承 + 立式泵 ; 参考:《兰州理工大学》2013年硕士论文
【摘要】:主动磁悬浮轴承系统是一门集机械设计、电子电路、电磁场、工程力学、材料学和仿真学等学科于一体的综合性技术,是一种通过无形地磁场力实现没有机械接触的高效率、高性能转子系统支承技术。早期主动磁悬浮轴承系统由于受到控制理论和电器元件滞后的约束,发展较为缓慢。而伴随微电子技术的迅速发展和应用,电子元器件的不断更新和完善以及控制理论的逐步成熟,主动磁悬浮轴承系统也在飞速发展。 本文将主动磁悬浮轴承引入立式泵中,用于改善立式泵的主轴导轴承故障率高、易于损坏的问题。在立式泵原先的外围结构上,针对立式泵的导轴承进行改进和革新。根据立式泵转子主轴的特点,重新设计与立式泵相配套的主动磁悬浮轴承机械结构并进行结构计算和仿真分析,同时研究设计与主动轴承相配套的控制策略、算法及控制平台。 由于立式泵转子主轴的结构特殊性,本文将首先从立式泵主动磁悬浮轴承的结构设计入手,通过使用电学和电磁学的基本公式推导出电磁吸力的参考公式,然后使用电磁场仿真软件对设计的结构进行磁场仿真,综合分析后使用三维设计软件对轴承结构进行实体造型并进行有限元仿真分析。根据具体的机械结构对主动磁轴承的控制策略进行研究,对基于实体结构的主动磁轴承的转子系统分别进行单自由度、五自由度数学模型建立和分析,结合文中几种控制方式得出了PID解耦控制策略并进行控制策略仿真分析。 本文中给出了立式泵主动磁轴承的控制平台的具体结构,控制平台的硬件部分主要包括DSP控制芯片、位移传感器、功率放大器及电磁模块。文中给出了芯片的基本运行电路以及两种芯片功能程序,分析了电涡流传感器的使用电路,并给出了光位移传感器在主动磁轴承上进行使用的原理。 本研究最后进行了实体实验,制作出一台与实际立式泵主轴比例为1:4.375的小型立式泵转子主轴四磁极主动磁悬浮轴承实验平台,并使用上了文中所给出的光位移传感器测量主轴位移,实验验证了PID解耦控制策略的可行性并且实验中主轴模型顺利成功起浮。
[Abstract]:The active magnetic bearing system is a comprehensive technology which integrates mechanical design, electronic circuit, electromagnetic field, engineering mechanics, materials science and simulation science. It is a kind of high efficiency without mechanical contact through invisible geomagnetic force. High performance rotor system supporting technology. The early active magnetic bearing system developed slowly because of the limitation of control theory and the hysteresis of electrical components. With the rapid development and application of microelectronic technology, the continuous updating and improvement of electronic components and the maturation of control theory, the active magnetic bearing system is also developing rapidly. In this paper, the active magnetic bearing is introduced into the vertical pump to improve the failure rate of the shaft guide bearing of the vertical pump, which is easy to be damaged. The original peripheral structure of vertical pump is improved and innovated for the guide bearing of vertical pump. According to the characteristics of the rotor spindle of the vertical pump, the mechanical structure of the active magnetic bearing matching with the vertical pump is redesigned, and the structure calculation and simulation analysis are carried out. At the same time, the control strategy, algorithm and control platform for the design and matching of the active bearing are studied. Because of the special structure of the rotor spindle of the vertical pump, this paper will first start with the structural design of the vertical pump active magnetic suspension bearing, and derive the reference formula of the electromagnetic suction by using the basic formulas of electricity and electromagnetism. Then the electromagnetic field simulation software is used to simulate the magnetic field of the designed structure. After comprehensive analysis, the three-dimensional design software is used to model the bearing structure and the finite element simulation analysis is carried out. The control strategy of active magnetic bearing is studied according to the specific mechanical structure. The rotor system based on solid structure is established and analyzed by mathematical models of single degree of freedom and five degrees of freedom respectively. The decoupling control strategy of PID is obtained by combining several control methods in this paper and the simulation analysis of the control strategy is carried out. In this paper, the structure of the control platform of vertical pump active magnetic bearing is given. The hardware of the control platform mainly includes DSP control chip, displacement sensor, power amplifier and electromagnetic module. In this paper, the basic operation circuit of the chip and two functional programs of the chip are given. The circuit of the eddy current sensor is analyzed, and the principle of using the optical displacement sensor on the active magnetic bearing is given. At the end of the study, an experimental platform of four-pole active magnetic bearing for rotor spindle of small vertical pump with a ratio of 1: 4.375 to the actual vertical pump spindle is made. The optical displacement sensor presented in this paper is used to measure the displacement of the spindle. The feasibility of the decoupling control strategy of PID is verified by experiments and the spindle model is successfully floated in the experiment.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TH133.3
【参考文献】
相关期刊论文 前7条
1 谭凤顺,金能强;永磁磁浮轴承的设计及其计算[J];低温与超导;2002年01期
2 邬清海;朱q,
本文编号:1806405
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1806405.html