可修系统维修的仿真分析
本文选题:预防维修 + 故障率 ; 参考:《华中农业大学》2011年硕士论文
【摘要】:随着科学技术的高速发展,生产设备趋于功用智能化、系统结构复杂化,在提高其可靠性的同时,其购买和维修的费用也随之上升。在这个经济全球化的时代,工厂或企业不可能只注重高可靠性而忽略经费的高投入问题,因此,科学的探讨适于生产设备的维修计划或策略是很有必要的。本文主要从以下三个方面展开研究:不同维修类型的故障率变化规律及其仿真抽样方法分析、一种基于费用率最小原则的复杂系统周期性预防维修策略的优化研究和基于维修作业计划的预防维修策略研究。 首先,本文对最小修、不完全维修及完全维修三种情形的故障强度变化进行了分析,探讨了不同情形的故障强度变化规律,并分别对达到预防维修周期前采取最小修及完全维修这两种情形基于最大利用度和经济损失最小原则得到了最优预防维修策略模型,然后对两种原则下的模型形式进行了比较,分析了模型的适用范围,同时对系统不同故障强度变化下是否需要进行预防维修做了阐述。进而基于连续函数的随机抽样方法,重点针对最小修及不完全维修的情形得到了故障时间抽样的递推公式。 其次,针对目前仅从宏观考虑系统经济利用率的缺陷,提出一种微观考虑的思想,将每个部件每次小修的时刻点加以利用,分析部件在整个预防维修间隔中单位时间的利用率,以整个预防维修周期内所有组成部件总的单位时间平均费用率最小为准则,得到了一个求解最优维修周期的方程。并以部件故障率服从威布尔分布的复杂系统为例进行了仿真计算,得到了其最优维修周期。 最后,基于现代维修控制理论的需要,本文针对企业维修作业计划的预防维修周期定额及预防维修工作定额展开研究,利用假设来对实际情形进行模拟:以不同的可靠度阈值反映系统组成部件的重要度,以变化的役龄回退因子和故障率递增因子刻画各部件在实际运行过程中故障率的变化规律,以修理设备可能出现故障来体现实际修理工作中的修理差错。在这种假设情形下,我们成功的通过可靠度阈值确定了各部件最优预防维修的周期,并通过部件全生命周期损失最小的原则得到了每一个部件的最优预防维修次数,即获得了部件的最优更换策略。进而我们引入了一个预防维修控制因子,建立了系统的动态预防维修策略模型,通过这个模型我们可以得到有限时间内的最优维修计划表。最终本文以工程部件常见的寿命分布——威布尔分布为例,对5部件串联的系统进行了算例仿真分析,成功得到了系统的年度最优预防维修作业计划,这具有一定的现实意义。
[Abstract]:With the rapid development of science and technology, the production equipment tends to function intelligentize and the system structure is complicated. While improving its reliability, the cost of purchase and maintenance also increases. In this era of economic globalization, factories or enterprises can not only pay attention to high reliability and ignore the problem of high expenditure. Therefore, it is necessary to scientifically discuss the maintenance plan or strategy suitable for production equipment. In this paper, the following three aspects of research are carried out: the variation of failure rate of different maintenance types and the analysis of simulation sampling methods. A study on the optimization of periodic preventive maintenance strategy for complex systems based on the principle of minimum cost rate and preventive maintenance strategy based on maintenance job plan. First of all, this paper analyzes the variation of fault strength in the three cases of minimum repair, incomplete repair and complete maintenance, and discusses the variation law of fault strength in different cases. The optimal preventive maintenance strategy model is obtained based on the principle of maximum utilization and minimum economic loss, and the model forms under the two kinds of principles are compared, which are the minimum repair and the complete maintenance before the preventive maintenance cycle is reached, and then the optimal preventive maintenance strategy model is obtained based on the principle of maximum utilization and minimum economic loss, and the model forms under the two principles are compared. The scope of application of the model is analyzed, and whether preventive maintenance is needed under different system failure intensity is expounded. Furthermore, based on the random sampling method of continuous function, the recurrence formula of fault time sampling is obtained for the cases of minimal repair and incomplete maintenance. Secondly, aiming at the defect of considering the utilization ratio of system economy only from macroscopic view, this paper puts forward the idea of microcosmic consideration, which makes use of the time point of each minor repair of each component, and analyzes the utilization ratio of unit time in the whole preventive maintenance interval. Based on the minimum average cost per unit time of all components in the whole preventive maintenance cycle, an equation for solving the optimal maintenance period is obtained. An example of complex system with component failure rate from Weibull distribution is given, and the optimal maintenance period is obtained. Finally, based on the needs of modern maintenance control theory, this paper studies the preventive maintenance cycle quota and preventive maintenance work quota of enterprise maintenance operation plan. The hypothesis is used to simulate the actual situation: different reliability thresholds are used to reflect the importance of the components of the system, and the varying regression factor of service age and the increasing factor of failure rate are used to describe the variation law of the failure rate of each component in the actual operation process. A repair error in the actual repair work is reflected in the possible failure of the repair equipment. Under this assumption, we successfully determine the optimal preventive maintenance cycle of each component through the reliability threshold, and obtain the optimal preventive maintenance times for each component by the principle of minimum component life cycle loss. The optimal replacement strategy is obtained. Then we introduce a preventive maintenance control factor and establish a dynamic preventive maintenance strategy model. Through this model we can get the optimal maintenance schedule in finite time. Finally, taking the life distribution-Weibull distribution of engineering components as an example, the paper makes a simulation analysis of the system with five components in series, and successfully obtains the annual optimal preventive maintenance operation plan of the system, which has certain practical significance.
【学位授予单位】:华中农业大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH17
【参考文献】
相关期刊论文 前10条
1 胡立臣,刘立,丁予展;复杂可维修设备寿命周期费用仿真[J];车辆与动力技术;2004年03期
2 蒋仁言,杜颖,龚瑞庚;定期预防维修最佳周期的确定[J];长沙交通学院学报;1987年02期
3 钱坪;;预防性维修周期的优化建模[J];火力与指挥控制;2010年11期
4 贾积身,王天虎;可修冷贮备系统的最优更换策略[J];河南机电高等专科学校学报;2000年04期
5 官洪运,禹素萍,韩帮军;电力设备预防性维修策略的优化[J];江南大学学报;2004年03期
6 王灵芝;徐宇工;张家栋;;以可靠性为中心的多部件系统预防性维修优化研究[J];计算机集成制造系统;2008年10期
7 盛天文;陈晓慧;易树平;;寿命型设备的预防维修策略研究[J];计算机集成制造系统;2009年03期
8 王凌;郑恩辉;李运堂;吴善强;陈锡爱;;维修决策建模和优化技术综述[J];机械科学与技术;2010年01期
9 韩帮军,范秀敏,马登哲;基于可靠度约束的预防性维修策略的优化研究[J];机械工程学报;2003年06期
10 陈建勇;郑海鹰;;两不同型部件串联系统的最优更换策略[J];科学技术与工程;2008年04期
相关博士学位论文 前2条
1 王凌;维修决策模型和方法的理论与应用研究[D];浙江大学;2007年
2 金玉兰;生产系统有限时间区间弹性周期预防性维修策略研究[D];上海交通大学;2009年
相关硕士学位论文 前6条
1 张春香;可维修系统的可靠性研究[D];燕山大学;2001年
2 张晨;基于可靠性的设备经济寿命与预防性维修周期的研究[D];南京理工大学;2006年
3 史叙田;老化型设备预防性维修策略优化[D];吉林大学;2008年
4 李志全;可维修机械产品使用可靠性研究[D];南京航空航天大学;2007年
5 任家君;可修复系统预防性维修策略的仿真与优化研究[D];吉林大学;2009年
6 王守柱;不同状态部件构成的系统可靠性分析与仿真计算[D];燕山大学;2010年
,本文编号:1824911
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1824911.html