基于联想记忆神经网络的故障识别
本文选题:离散Hopfield网络 + 联想记忆 ; 参考:《燕山大学》2012年硕士论文
【摘要】:工业生产、工程机械、航天、船舶中因某一关键设备发生故障,常常造成巨大的经济损失甚至灾难性事故,故障识别技术可以分析故障,防患于未然,减少损失。液压泵是液压系统的一个重要组成部分,其性能好坏直接影响着液压系统工作的可靠性和稳定性,所以对其进行故障识别的研究具有很重要的现实意义。本文对具有联想记忆功能的神经网络技术进行研究,并对轴向柱塞泵的故障进行识别。 首先,研究了离散Hopfield神经网络,对结构和有关收敛稳定性的理论进行了详细的探讨;另一方面对联想记忆的功能实现和概念进行了具体描述,在应用中探讨了输入信号必须是二值型的弊端,从而结合BP网络强非线性处理的优点,对网络结构进行合理的拟合,在实际中可以得到普遍应用。 其次,针对联想记忆神经网络易陷入局部极小值的特点,引入粒子群算法对网络权值进行了优化,得到了收敛性能较高的网络。在联想记忆神经网络故障识别之前,对网络中参数:层数,隐层神经元个数,学习速率,惯性权重,加速因子等进行了试探性的确定。 最后应用本文提出的联想记忆神经网络BP-HNN和BP-HNN-PSO对液压泵的各种故障进行识别和分析比较,验证了方法的有效性,,并发现加入粒子群算法的联想记忆神经网络的识别结果值较高,识别率较高,较可靠。为了减少故障识别中的“错分”现象,利用艾宾浩斯记忆遗忘曲线对学习样本进行交叉循环安排,提高了学习的记忆效果,一定程度上达到了减少“错分”的目的。
[Abstract]:In industrial production, construction machinery, spaceflight and ship, the failure of a certain key equipment often results in huge economic loss or even catastrophic accident. The fault identification technology can analyze the fault, prevent the trouble from happening, and reduce the loss. Hydraulic pump is an important part of hydraulic system. Its performance directly affects the reliability and stability of hydraulic system. In this paper, the neural network technology with associative memory is studied, and the fault of axial piston pump is identified. Firstly, the discrete Hopfield neural network is studied, the structure and the theory of convergence stability are discussed in detail, on the other hand, the functional realization and concept of associative memory are described in detail. This paper discusses the disadvantage that the input signal must be a binary type in application, thus combining the advantages of strong nonlinear processing of BP network, the network structure is fitted reasonably, which can be widely used in practice. Secondly, aiming at the characteristic that associative memory neural networks are prone to fall into local minima, particle swarm optimization algorithm is introduced to optimize the weights of the networks, and a network with high convergence performance is obtained. Before the fault identification of associative memory neural network, the parameters of the network, such as the number of layers, the number of hidden layer neurons, the learning rate, the inertia weight, the acceleration factor and so on, are determined tentatively. Finally, using the associative memory neural network BP-HNN and BP-HNN-PSO presented in this paper to identify and compare the various faults of hydraulic pump, the validity of the method is verified, and it is found that the recognition result of associative memory neural network with particle swarm optimization algorithm is higher. The recognition rate is high and reliable. In order to reduce the phenomenon of "wrong points" in fault identification, the learning samples are arranged by using the Albinhaus memory forgetting curve, which improves the memory effect of learning and to some extent achieves the purpose of reducing the "wrong scores".
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165.3;TP183
【参考文献】
相关期刊论文 前10条
1 赵四军;王少萍;尚耀星;;航空液压泵柱塞游隙增大故障诊断[J];北京航空航天大学学报;2010年03期
2 贾嵘;徐其惠;李辉;刘伟;;基于邻域粒子群优化神经网络的变压器故障诊断[J];高压电器;2008年01期
3 明廷涛;张永祥;孙云岭;;液压伺服系统的H_∞观测器设计[J];海军工程大学学报;2009年06期
4 陆雪梅;尚群立;;动态控制系统的故障诊断方法综述[J];机电工程;2008年06期
5 倪远平,李一民,周建华,杨剑;自适应遗传神经算法及故障识别[J];计算机工程与应用;2003年35期
6 陈季萍,杨瑞军;利用倒频谱诊断液压泵早期故障[J];机械设计与制造;2005年09期
7 贺尚红,钟掘;基于调制函数法的线性连续动力学系统参数模型估计[J];机械工程学报;2003年12期
8 袁静;何正嘉;訾艳阳;;基于提升多小波的机电设备复合故障分离和提取[J];机械工程学报;2010年01期
9 周东华,席裕庚,张钟俊;故障检测与诊断技术[J];控制理论与应用;1991年01期
10 李渭华;萧德云;方崇智;;基于数学模型的故障检测与分离技术[J];控制与决策;1992年06期
相关博士学位论文 前1条
1 吴胜强;核主元分析及证据理论的多域特征故障诊断新方法研究[D];燕山大学;2011年
相关硕士学位论文 前2条
1 邹会荣;基于TMS320F2812的数据采集及电力电缆故障识别[D];西安科技大学;2008年
2 李进如;基于改进小波神经网络的故障识别方法研究[D];华北电力大学(北京);2008年
本文编号:1874310
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1874310.html