当前位置:主页 > 科技论文 > 机械论文 >

大流量调节阀稳压控制技术研究

发布时间:2018-05-21 19:03

  本文选题:大流量调节阀 + 稳压控制 ; 参考:《山东大学》2011年硕士论文


【摘要】:大流量气压、液压调节阀在国民经济生产过程中有着广泛的应用,但是由于目前国内制造业的现状,对于众企业大量进口高性能调节阀这一问题,一直难以解决,因此亟需对高性能调节阀及其先进控制技术进行深入研究。本文在全面分析国内传统调节阀和国外先进高性能调节阀的基础之上,对大型调节阀稳压控制技术进行了重点研究,最终目的是开发适合钢厂联合循环发电工程所需要的高性能大流量调节阀。 首先,创建了大流量调节阀稳压实验系统平台。参考企业生产实际,针对钢厂所确定的数据,结合实验室所建立的实验系统,了解实验系统所用器件的型号、规格。在此基础上,尝试利用电液伺服系统驱动大流量调节阀阀芯的想法,以取代现在大型钢厂使用的气体压力调节系统,建立了大流量调节阀混合煤气稳压系统的实验平台,并对实验参数进行了确定,进行了初步的元器件选型,对以后的实际实验过程具有指导意义。 其次,建立了大流量调节阀混合煤气稳压系统的数学模型。利用液压缸节流口处流量连续性方程、液压缸和负载的力平衡方程、阀芯受力不平衡方程、电液伺服阀传递函数等方程式确定阀控液压缸系统的动特性,并根据大流量调节阀混合煤气稳压系统方程式建立大流量调节阀混合煤气稳压系统传递函数,由此建立系统的数学模型方块图。 再次,在系统设计及数学模型的基础上,对大流量调节阀混合煤气稳压系统进行了MATLAB/Simulink动态响应仿真分析,包括常规PID控制系统仿真和模糊PID控制系统仿真。系统仿真过程中,结合实际生产过程中大型气体压力调节阀存在的响应慢和响应滞后问题,对常规PID控制仿真结果和模糊PID控制仿真结果进行了对比,针对两种仿真结果各自的不足之处,得出两种仿真控制的优缺点。将模糊PID控制系统引入本实验系统的尝试对以后利用西门子PLC参数自整定功能进行控制具有指导意义。 最后,在MATLAB/Simulink仿真的基础上,利用ABB Industrial IT AC800F控制软件对整个实验系统进行仿真,以验证所建实验系统模型的准确性。通过进行常规PID控制仿真分析可知,常规PID控制基本能达到实验系统要求。
[Abstract]:Large flow pressure and hydraulic control valves are widely used in the process of national economic production. However, due to the present situation of domestic manufacturing, it is difficult to solve the problem of importing a large number of high performance control valves from many enterprises. Therefore, it is urgent to study the high performance control valve and its advanced control technology. Based on the comprehensive analysis of domestic traditional control valves and foreign advanced high performance control valves, this paper focuses on the study of the pressure stabilizing control technology of large regulating valves. The final aim is to develop high performance and large flow regulating valve suitable for combined cycle power generation project of steel plant. First of all, a large flow regulating valve pressure control system platform is established. Referring to the production practice of the enterprise, according to the data determined by the steel factory, combined with the experimental system established in the laboratory, the model and specification of the device used in the experimental system are understood. On this basis, the paper tries to use the idea of electro-hydraulic servo system to drive the valve core of large flow regulating valve, in order to replace the gas pressure regulating system used in large steel plant, and establish the experimental platform of the mixed gas pressure stabilizing system of large flow regulating valve. The parameters of the experiment are determined and the selection of the components is carried out, which is of great significance to the practical experiment process in the future. Secondly, the mathematical model of large flow regulating valve mixed gas stabilizer system is established. The dynamic characteristics of the valve controlled hydraulic cylinder system are determined by using the flow continuity equation at the throttle of the hydraulic cylinder, the force balance equation between the hydraulic cylinder and the load, the unbalance force equation of the valve core and the transfer function of the electro-hydraulic servo valve. According to the equation of the large flow regulating valve mixture gas stabilizing system, the transfer function of the large flow regulating valve mixture gas stabilizing system is established, and the mathematical model block diagram of the system is established. Thirdly, on the basis of the system design and mathematical model, the MATLAB/Simulink dynamic response simulation analysis of the large flow regulating valve mixed gas stabilizing system is carried out, including the simulation of the conventional PID control system and the fuzzy PID control system simulation. In the course of system simulation, the simulation results of conventional PID control and fuzzy PID control are compared with the problems of slow response and delayed response of large gas pressure regulator in actual production process. According to the shortcomings of the two simulation results, the advantages and disadvantages of the two kinds of simulation control are obtained. The attempt to introduce fuzzy PID control system into this experimental system is of guiding significance for the control of Siemens PLC parameter self-tuning function in the future. Finally, on the basis of MATLAB/Simulink simulation, ABB Industrial IT AC800F control software is used to simulate the whole experimental system to verify the accuracy of the established experimental system model. Through the simulation analysis of conventional PID control, it can be seen that the conventional PID control can basically meet the requirements of the experimental system.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH134

【参考文献】

相关期刊论文 前10条

1 ;Application of Single Neuron Adaptive PID Regulators with Auto-tuning Gain in Industrial Parameter(Pressure)Closed-loop Process Control Systems[J];Journal of University of Science and Technology Beijing(English Edition);1999年02期

2 董海鹰;孙传华;;Research on Power Control of Wind Power Generation Based on Neural Network Adaptive[J];Journal of Measurement Science and Instrumentation;2010年02期

3 齐旭;;调压器的平衡阀芯设计[J];城市燃气;2008年02期

4 杨世忠;邢丽娟;;调节阀流量特性分析及应用选择[J];阀门;2006年05期

5 徐力生;叶松源;陈伟;胡芳龙;苏达;徐蒙;;新型自控调节阀的研制[J];贵州水力发电;2006年02期

6 杨尚平;刘克铭;曾义春;;液压缸总阻力的试验确定法[J];广西大学学报(自然科学版);1986年01期

7 张志伟,张福波,王国栋;一种双液压缸同步控制方法及其仿真研究[J];机床与液压;2003年03期

8 韦巍;智能控制技术的研究现状和展望[J];机电工程;2000年06期

9 陈作炳;杨红波;吴义华;;DCS在窑尾燃油自动控制系统中的应用[J];机械工程师;2007年10期

10 徐洋;华宏星;韩俊伟;;结构主动控制中振动台液压动力机构的建模与分析[J];上海交通大学学报;2008年03期

相关博士学位论文 前1条

1 刘延俊;气动比例位置系统的控制方法及动态特性研究[D];山东大学;2008年

相关硕士学位论文 前9条

1 李韶远;唐钢无头轧制多级传动系统控制策略的研究[D];河北工业大学;2003年

2 朱良红;模糊控制技术在过程控制中的应用研究[D];华侨大学;2004年

3 赵辉;基于内模控制原理的PID控制器设计[D];天津大学;2005年

4 周洪波;提高电液振动台控制性能的研究[D];沈阳工业大学;2006年

5 涂书柏;深海采矿车速度控制研究[D];中南大学;2008年

6 孙如军;数控液压伺服系统研究及在机床改造中的应用[D];山东大学;2008年

7 蔡德发;四川精控阀门制造有限公司(KCON)市场营销策略探析[D];西南交通大学;2008年

8 杨振华;大流量混合煤气调节阀电液比例系统稳压技术的研究[D];山东大学;2009年

9 朱传同;数控高速冲床液压系统的动静态特性及控制方法研究[D];山东大学;2010年



本文编号:1920382

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1920382.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d35ea***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com