电动叉车交流异步电机矢量控制系统的研究与设计
发布时间:2018-06-07 20:38
本文选题:电动叉车 + 新型无死区SVPWM调制 ; 参考:《东北大学》2012年硕士论文
【摘要】:随着能源、环保问题日益突出,电动叉车逐步代替传统叉车。国内电动叉车具有很高的研究价值和广阔的市场前景,而电动叉车设计的核心是控制系统,所以对于叉车控制系统的研究是有现实的经济和社会效益的。 本课题主要研究与设计一套可以用于实际应用的电动叉车异步电机矢量控制系统。本文首先介绍了异步电机在三相静止坐标系下的数学模型,引入空间矢量的概念,通过坐标变换,得到了两相静止坐标系和两相旋转坐标下的数学模型,进而介绍矢量控制的基本概念和转子磁场定向的原理。然后,针对传统SVPWM调制方法死区影响的问题,深入分析了传统SVPWM与混合矢量调制,研究设计了新型的无死区SVPWM调制方法该调制方法无需设置死区。解决了传统SVPWM调制方法中死区效应导致波形畸变的问题,从根本上彻底避免了死区问题,逆变交流侧输出波形无畸变,正弦度良好,详细分析该方法的原理及实现方法,并在Simulink中搭建仿真,验证了该方法的正确性。 其次,系统软硬件设计包括主电路功率设计、驱动电路设计、控制电路设计以及系统软件设计。主电路设计主要分析MOSFET的基本特性,对MOSFET并联均流特性进行分析,并在saber仿真环境下建立仿真,分析MOSFET并联均流特性。设计了带有缓冲电路的铝基板工艺主电路功率板,并给出了缓冲电路中各元件参数的理论推导计算公式以及铝基板设计的要求。驱动电路的设计主要采用了光耦隔离加推拉电路驱动,既隔离屏蔽增加抗干扰能力,保障系统的安全运行,又满足开关速度与驱动能力。设计了以TMS320F28335为核心的控制电路及软件系统。 最后,介绍了间接磁场定向矢量控制系统,对控制系统的电流环和速度环进行了设计,搭建矢量控制系统的Simulink仿真,仿真结果表明控制系统具有很好的动态响应和稳态精度。并在搭建的硬件平台上,进行驱动电路、缓冲电路及矢量控制系统的实验。实验结果表明:新型SVPWM调制方法驱动效果良好,缓冲电路对驱动信号有明显改善,系统运行稳定,动态性能良好,符合设计要求。
[Abstract]:Along with the energy, the environmental protection question is increasingly prominent, the electric forklift replaces the traditional forklift step by step. The domestic electric forklift has high research value and broad market prospect, and the core of the electric forklift design is the control system. Therefore, the research of forklift control system has realistic economic and social benefits. This paper mainly studies and designs a vector control system of asynchronous motor of electric forklift truck which can be used in practical application. In this paper, the mathematical model of induction motor in three-phase stationary coordinate system is introduced, and the concept of space vector is introduced. Through coordinate transformation, the mathematical model of two-phase stationary coordinate system and two-phase rotating coordinate system is obtained. Then the basic concept of vector control and the principle of rotor magnetic field orientation are introduced. Then, aiming at the problem of dead-time influence of traditional SVPWM modulation method, this paper analyzes the traditional SVPWM and hybrid vector modulation, and designs a new no-dead-zone SVPWM modulation method, which does not need to set dead-time. The problem of waveform distortion caused by dead-time effect in traditional SVPWM modulation method is solved, and the dead time problem is completely avoided. The output waveform of inverter AC side has no distortion, and the sinusoidal degree is good. The principle and implementation method of this method are analyzed in detail. The simulation in Simulink verifies the correctness of the method. Secondly, the system hardware and software design includes power design of main circuit, drive circuit design, control circuit design and system software design. The main circuit design mainly analyzes the basic characteristics of MOSFET, analyzes the parallel current sharing characteristics of MOSFET, and establishes the simulation under the saber simulation environment to analyze the parallel current sharing characteristics of MOSFET. The main circuit power board of aluminum substrate with buffer circuit is designed, and the theoretical derivation formula of the parameters of each element in the buffer circuit and the requirements of the design of aluminum substrate are given. The driving circuit is mainly designed by optocoupler isolation and push-pull circuit, which not only increases the anti-interference ability, but also meets the switching speed and driving ability. The control circuit and software system based on TMS320F28335 are designed. Finally, the indirect magnetic field oriented vector control system is introduced. The current loop and velocity loop of the control system are designed, and the Simulink simulation of the vector control system is built. Simulation results show that the control system has good dynamic response and steady-state accuracy. The experiments of drive circuit, buffer circuit and vector control system are carried out on the hardware platform. The experimental results show that the new SVPWM modulation method has good driving effect, the buffer circuit has obvious improvement on the driving signal, the system runs stably, the dynamic performance is good, and it meets the design requirements.
【学位授予单位】:东北大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TM343;TH242
【参考文献】
相关期刊论文 前10条
1 李新君;伍铁斌;;一种基于SVPWM的死区补偿策略[J];变频器世界;2010年05期
2 杨忠敏;;交流驱动开创了电动叉车新技术[J];电机技术;2007年03期
3 田颖,陈培红,聂圣芳,卢青春;功率MOSFET驱动保护电路设计与应用[J];电力电子技术;2005年01期
4 何人望;黄炜;;高压IGCT缓冲电路的仿真与实验研究[J];电力电子技术;2007年07期
5 范进秋;莫锦秋;王石刚;张斌;;一种桥式拓扑结构下MOSFET高速驱动电路[J];电力电子技术;2010年03期
6 高锋阳;黄聪月;翟建国;;低通滤波器观测定子磁链对DTC性能改善研究[J];电气传动自动化;2010年02期
7 李国丽;夏秋实;胡存刚;王群京;;三电平NPC逆变器SVPWM方法研究[J];电气传动;2007年12期
8 马小亮;;矢量控制系统的解耦与调节器设计[J];电气传动;2009年01期
9 董恒;王辉;黄科元;;永磁同步电动机驱动系统数字PI调节器参数设计[J];电气传动;2009年01期
10 葛小荣;;功率MOSFET并联应用[J];电子技术应用;2010年05期
,本文编号:1992725
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/1992725.html