基于双平面研磨方式的圆柱零件运动分析及工艺优化研究
本文选题:圆柱零件 + 双平面研磨 ; 参考:《浙江工业大学》2012年硕士论文
【摘要】:高精度、高一致性圆柱滚子(圆柱零件)是高精度轴承的关键基础元件,广泛应用于精密轴承、能源机械、国防尖端装备中。目前,圆柱零件普遍采用无心磨削加工,然而传统加工方法难以获得较高的精度和一致性,这使得圆柱零件在高端领域的应用受到了限制。为解决传统加工方法的缺陷,本文提出了一种双平面研磨加工方法。通过控制圆柱零件的自转,利用误差匀化的原理保证了各圆柱面的切削等概率性,在保证加工效率的同时实现了圆柱零件高精度和高一致性的加工。研磨轨迹线对研磨均匀性有重要意义,本文通过研究圆柱零件、研磨盘与行星轮的运动关系,采用矩阵图形变换法建立了基于双平面研磨方式的圆柱零件的运动学方程。采用MATLAB对建立的运动方程进行仿真,分析各研磨轨迹线的均匀性和轨迹密度的分布状况,确定转速wp=40-65rpm、传动比m-1,-0.3m0.3,0.3m1,-1m-0.3、研磨半径Rp=100-140mm等工艺参数范围内研磨轨迹线均匀且密集。采用ADAMS建立研磨运动学模型,仿真圆柱零件表面研磨轨迹,进一步分析在上述参数范围内精确的参数组合。采用ADAMS仿真直接绘出轨迹曲线和MATLAB对从ADAMS导出的坐标、速度数据进行精确数值分析相结合的方法,以研磨轨迹均匀性为目标独创性的建立了圆柱零件表面研磨均匀性的评价方法,利用此方法确定了转速wp=45、60rpm,传动比m=-5、-0.5、5,研磨半径Rp=125mm、加载压力F=1-3N为较优的工艺参数组合。基于上述的分析结果,进行实验验证,并对研磨工艺参数进行评价及再优化,实验分析发现传动比、磨料粗细、磨盘转速等工艺参数对圆柱零件的精密加工有关键影响,通过影响因素实验分析和正交实验分析得出传动比在m=-5、转速在45rpm、加载压力F=1.5N/工件、磨粒在4000#以及磨粒浓度在25%时,研磨轨迹线比较密集均匀,可使得圆度、直线度及平行度均在1um以下的目标,也是本文优化后最佳的工艺参数组合。
[Abstract]:High precision, high consistency cylindrical roller (cylindrical parts) is the key element of high precision bearing, widely used in precision bearings, energy machinery, national defense sophisticated equipment. At present, cylindrical parts are generally processed by centerless grinding. However, the traditional machining methods are difficult to obtain high accuracy and consistency, which limits the application of cylindrical parts in the high-end field. In order to solve the defects of traditional machining methods, a double-plane grinding method is proposed in this paper. By controlling the rotation of cylindrical parts, the principle of error homogenization is used to ensure the equal probability of cutting each cylindrical surface, and the machining efficiency is guaranteed, and the machining of cylindrical parts with high accuracy and consistency is realized at the same time. The grinding trajectory is of great significance to the uniformity of grinding. In this paper, the kinematics equations of cylindrical parts based on double plane grinding are established by studying the kinematic relationship between cylindrical parts, grinding disks and planetary wheels. The equation of motion was simulated by MATLAB, and the uniformity and distribution of track density of each grinding track line were analyzed. It was determined that the rotation speed was 40 ~ 65rpm, the transmission ratio was m ~ (-1) ~ (-3) m ~ (0.3) ~ (0.3) m ~ (-1) ~ (-1) m ~ (-3), the grinding radius was 100 ~ (-140 mm) mm, and the grinding track line was uniform and dense. The kinematics model of grinding is established by Adams, and the grinding track of cylindrical parts is simulated, and the precise parameter combination in the range of above parameters is further analyzed. By using Adams simulation to draw the trajectory curve directly and MATLAB to carry out accurate numerical analysis of coordinate and velocity data derived from Adams, the method of combining the accurate numerical analysis of the coordinate and velocity data derived from Adams is presented. The evaluation method of surface grinding uniformity of cylindrical parts is established with the aim of the uniformity of grinding track as the object. By using this method, the optimum process parameters such as rotating speed wpf45rpm, transmission ratio m5- 5- 0.5mm, grinding radius Rp1 125mm and loading pressure F1-3N are determined as the better process parameters. Based on the above analysis results, the experimental results are verified, and the grinding process parameters are evaluated and optimized. The experimental results show that the transmission ratio, the abrasive thickness, the rotating speed of the grinding disc and other technological parameters have a key effect on the precision machining of cylindrical parts. By means of experimental analysis and orthogonal experiment, it is found that the grinding trajectory is dense and uniform when the transmission ratio is at mU -5, the rotational speed is at 45rpm, the pressure is F _ (1.5) N / workpiece, the abrasive particle is at 4000# and the abrasive particle concentration is 25%, which can make the degree of roundness. The straightness and parallelism are all below 1um, which is the best process parameter combination after optimization in this paper.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH133.3
【相似文献】
相关期刊论文 前10条
1 朱训生;薛秉源;;九种计算圆柱度的近似方法及其较比[J];现代机械;1990年02期
2 孟祥成,王俊伟,张威;内孔圆柱度的电子测量[J];机械工人.冷加工;2004年05期
3 XZ田忠夫;姜凤鹤;;圆柱度的新测量法[J];国外计量;1981年03期
4 韩渭鑫;;薄壁气缸套磨削后圆柱度的超差及其预防[J];机械工艺师;1985年03期
5 雷继辉;关福州;;高精度圆柱角尺的加工工艺改进[J];金属加工(冷加工);2014年02期
6 顾开颜;;一种提高圆柱度的外圆磨削新技术[J];磨床与磨削;1991年04期
7 慕道增;李文祥;;珩磨头行程调整对被加工孔圆柱度的影响[J];机械工程师;2012年03期
8 朱玉永,武万红;与《圆柱度智能检测系统》一文商榷[J];计量技术;1995年07期
9 宋淑娥;施志辉;;轴箱体内孔加工圆柱度超差分析及夹紧力计算[J];组合机床与自动化加工技术;2008年04期
10 杜绍先;;怎样预防珩孔时圆度及圆柱度超差[J];机械工人.冷加工;2006年07期
相关会议论文 前1条
1 刘岩;左春柽;丁光正;栗利刚;文伟力;;大型圆柱工件非接触测量方法研究[A];第八届中国轧机油膜轴承技术研讨会论文集[C];2006年
相关重要报纸文章 前1条
1 白阳;以微米为尺度的珩研高手[N];中国航空报;2003年
相关硕士学位论文 前1条
1 任玉刚;基于双平面研磨方式的圆柱零件运动分析及工艺优化研究[D];浙江工业大学;2012年
,本文编号:2032592
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2032592.html