当前位置:主页 > 科技论文 > 机械论文 >

液压同步阀的创新研究

发布时间:2018-07-15 22:31
【摘要】:液压技术在现代机械工程和现代控制工程中应用非常广泛,已成为衡量工业化水平的重要标志之一。在机械制造、建筑机械和化工机械等领域中应用广泛,一直是国内外研究的热门之一。液压同步控制实现的方法有闭环和开环两种,而采用液压同步阀的液压同步控制是开环同步控制中最基本的控制形式,具有组成简单、易于控制和能承受较大偏载等诸多优点。 典型的同步阀有换向活塞式和挂钩式两种,这种结构几十年来都未发生根本的改变,均存在结构复杂、体积较大和同步精度低等问题。对此,国内外学者已做了大量探索研究,但都没有改变其基本结构。这种同步阀的静动态性能可通过增大阀芯直径来提高,但增大阀芯直径,会增大阀芯质量和摩擦,从而减弱同步阀性能,而且还会增大体积。针对上述问题,本论文通过对换向活塞式同步阀的结构和建模分析,找到其问题的根本,设计出了一种新型结构的同步阀,具有同步性能好,体积小的特点。 本论文设计的新型同步阀分为新型分流阀和新型集流阀。主要以新型分流阀为分析研究对象,对其进行了数学建模并借助AMESim软件进行仿真分析。通过数学建模分析可知,影响新型分流阀性能的主要参数为固定节流孔直径、压力反馈活塞面积和阀芯、压力反馈活塞及弹簧的总质量。新型同步阀阀存在响应死区,可以通过增大压力反馈活塞面积或减小阀芯与阀体内孔之间的摩擦来减小;通过仿真分析可知,新型阀的计算速度同步误差小于1%,较传统的FJL-B20H型换向活塞式同步阀有明显提高。同时,借助AMESim仿真软件,探索了固定节流孔直径和压力反馈活塞直径对新型分流阀动态性能的影响,得到一组主要尺寸的经验优化参数。通过仿真分析得出,改进后其速度同步误差小于0.6%;在负载压差为30MPa的情况下,改进后其动态响应时间为0.475秒,且改进后其体积为103.6×104mm3,仅约为FJL-B20H型换向活塞式同步阀的体积(207.36x104mm3)的二分之一,达到预期的设计目标。
[Abstract]:Hydraulic technology is widely used in modern mechanical engineering and modern control engineering, and has become one of the important symbols to measure the level of industrialization. It is widely used in the fields of mechanical manufacturing, construction machinery and chemical machinery, and has been one of the hot research fields at home and abroad. There are two methods to realize hydraulic synchronous control: closed loop and open loop. Hydraulic synchronous control with hydraulic synchronous valve is the most basic control form in open loop synchronous control, which has many advantages such as simple composition, easy control and can withstand large offset load. There are two typical synchronous valves: reversing piston type and hook type. The structure of this kind of valve has not been changed fundamentally in recent decades. The structure is complicated, the volume is large and the synchronization accuracy is low. Scholars at home and abroad have done a lot of research, but have not changed its basic structure. The static and dynamic performance of this kind of synchronous valve can be improved by increasing the diameter of the valve core, but increasing the diameter of the valve core will increase the quality and friction of the valve core, thus weakening the performance of the synchronous valve and increasing the volume. In order to solve the above problems, by analyzing the structure and modeling of commutative piston synchronous valve, a new type of synchronous valve with good synchronization performance and small volume is designed. The new synchronous valve designed in this paper is divided into a new type of diversion valve and a new type of collecting valve. Taking the new type of shunt valve as the research object, the mathematical modeling and simulation analysis are carried out with the aid of AMESim software. Through mathematical modeling and analysis, the main parameters affecting the performance of the new valve are fixed throttle diameter, pressure feedback piston area and valve core, pressure feedback piston and the total mass of spring. The new synchronous valve has a response dead zone, which can be reduced by increasing the pressure feedback piston area or reducing the friction between the spool and the inner hole of the valve body. The calculation speed synchronization error of the new valve is less than 1, which is obviously higher than that of the traditional FJL-B20H reversing piston synchronous valve. At the same time, with the aid of AMESim simulation software, the influence of the diameter of the fixed throttle hole and the diameter of the piston with pressure feedback on the dynamic performance of the new type of shunt valve is explored, and a set of empirical optimization parameters of the main dimensions are obtained. The simulation results show that the speed synchronization error is less than 0.6 and the dynamic response time is 0.475 seconds when the load pressure difference is 30 MPA. The volume of the improved valve is 103.6 脳 10 ~ 4mm ~ (3), which is only about 1/2 of the volume (207.36x104mm3) of the FJL-B20H reversing piston synchronous valve.
【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH137.52

【参考文献】

相关期刊论文 前10条

1 杨宾峰;宁李谱;;液压阀设计方法的研究[J];河南科技学院学报(自然科学版);2008年02期

2 赵静一;刘雅俊;王智勇;;分流集流阀在1000kN液压载重运输车中的应用[J];机床与液压;2007年04期

3 任锦堂,吴良宝,黄雪坤;液压分流阀动态性能分析[J];机械设计与研究;1985年03期

4 任锦堂,黄雪坤;分流集流阀的优化设计[J];机械设计与研究;1987年02期

5 胡远南,,王运赣;新型同步分流阀的设计[J];机械设计;1995年03期

6 乌建中,徐鸣谦;液压同步提升技术回顾与展望[J];同济大学学报(自然科学版);1997年02期

7 姚丁曦;周庆熊;;新控制原理液压分流阀的研究[J];太原工业大学学报;1989年01期

8 张永果;胡文伟;韩志军;;同步PI控制系统的设计与优化[J];液压工业;1989年04期

9 李晶,聂崇嘉;流量对分流集流阀同步精度的影响[J];液压气动与密封;1998年02期

10 杨世祥;自调式同步阀[J];液压与气动;1980年02期



本文编号:2125587

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2125587.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5aba8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com