当前位置:主页 > 科技论文 > 机械论文 >

超高压水射流装置液压系统的仿真研究

发布时间:2018-08-30 18:26
【摘要】:高压水射流技术是近30年发展起来的一项新技术,目前已在煤炭、石油、冶金、航空、交通、化工、建筑、市政工程等部门和领域应用,主要用于清洗、切割、破碎等方面。高压水射流技术凭借着高效、节能、环保、机动灵活等特点,在国内各工业部门得到越来越广泛的应用,也越来越受到人们的重视。高压水射流设备作为高压水的发生装置,其整体性能将直接影响高压水射流技术的应用和推广。虽然我国在高压水射流设备相关技术的研究上取得了许多成果,国内也有不少企业从事高压水射流设备的制造,但是我国生产的高压水射流设备在整体性能上与国外产品相比还存在较大差距。故开展改善高压水射流设备整体性能的研究工作是很有必要的,具有十分重要的意义。 本文以某公司生产的超高压水射流装置为研究对象,结合该超高压水射流装置存在水射流系统出水压力波动幅度较大、增压器运行效率不高、液压系统油温过高等问题,对该超高压水射流装置液压系统进行仿真研究,为其性能的改善提供理论依据和切实可行的方案。首先,对该超高压水射流装置液压系统的相关理论进行分析;其次,对双组增压器水射流系统出水压力波动进行研究,详细分析非同组增压器活塞运动延迟时间对水射流系统出水压力波动的影响;再次,对增压器输出机理进行研究,分析了增压器的输出特性及增压器物理参数对其运行效率的影响规律;最后,对该超高压水射流装置液压系统的油温进行仿真计算,优化系统冷却器的选型,并分析各种参数对液压系统油温变化的影响。 本文主要采用理论分析与仿真分析相结合的方法对该超高压水射流装置液压系统中存在的问题进行研究。通过理论分析分别建立了双组增压器水射流系统的数学模型、液压增压器的运动学模型及该液压系统的热分析模型,然后运用MATLAB软件进行双组增压器水射流系统出水压力的模拟分析、增压器内部运动微分方程的数值分析及该液压系统油温的仿真计算。 研究结果表明,延迟时间对双组增压器水射流系统出水压力波动有较大的影响,并且在其它影响因素不变的情况下,存在最佳的延迟时间值使得系统出水压力的波动幅度最小。影响增压器运行效率的因素主要有阻尼系数、增压器与单向阀之间高压管路的体积、换向阀换向时间、水射流系统的回油压力等。当该超高压水射流装置液压系统处于两种不同工作状态时,系统所需的冷却器制冷量相差较大。油箱的有效容积与环境温度对液压系统的油温有较大的影响。
[Abstract]:High-pressure water jet technology is a new technology developed in recent 30 years. It has been applied in coal, petroleum, metallurgy, aviation, transportation, chemical industry, construction, municipal engineering and other departments and fields, mainly used in cleaning, cutting, crushing and so on. High pressure water jet technology is more and more widely used and paid more and more attention to in various industrial sectors because of its high efficiency, energy saving, environmental protection, flexibility and so on. As a generating device of high pressure water, the whole performance of high pressure water jet equipment will directly affect the application and popularization of high pressure water jet technology. Although many achievements have been made in the research of the technologies related to high pressure water jet equipment in China, many domestic enterprises are also engaged in the manufacture of high pressure water jet equipment. However, there is still a big gap in the overall performance of the high pressure water jet equipment produced in our country compared with foreign products. Therefore, it is necessary to improve the overall performance of high pressure water jet equipment. In this paper, the ultra-high pressure water jet device produced by a company is taken as the research object. Combined with the ultra-high pressure water jet device, the pressure fluctuation of the water jet system is large, the supercharger operation efficiency is not high, and the oil temperature of the hydraulic system is too high. The simulation study on the hydraulic system of the ultra-high pressure water jet device provides theoretical basis and practical scheme for the improvement of its performance. Firstly, the related theories of the hydraulic system of the ultra-high pressure water jet system are analyzed. Secondly, the pressure fluctuation of the water jet system of the double supercharger is studied. The effect of the delay time of piston movement on the pressure fluctuation of water jet system is analyzed in detail. Thirdly, the output mechanism of supercharger is studied. The output characteristics of the supercharger and the influence of the physical parameters of the supercharger on its operation efficiency are analyzed. Finally, the oil temperature of the hydraulic system of the ultra-high pressure water jet device is simulated and the type selection of the system cooler is optimized. The influence of various parameters on oil temperature of hydraulic system is analyzed. In this paper, the problems existing in the hydraulic system of the ultra-high pressure water jet device are studied by combining theoretical analysis with simulation analysis. Based on the theoretical analysis, the mathematical models of the water jet system of the double turbocharger, the kinematics model of the hydraulic supercharger and the thermal analysis model of the hydraulic system are established, respectively. Then MATLAB software is used to simulate and analyze the outlet pressure of the water jet system of the double turbocharger, the numerical analysis of the differential equation of motion in the supercharger and the simulation calculation of the oil temperature of the hydraulic system. The results show that the delay time has a great influence on the pressure fluctuation of the water jet system of the two-group turbocharger, and there is the best delay time value to minimize the fluctuation of the outlet pressure under the condition of other influencing factors. The main factors affecting the efficiency of supercharger are damping coefficient, volume of high pressure pipeline between supercharger and unidirectional valve, reversing time of reversing valve, return pressure of water jet system, etc. When the hydraulic system of the ultra-high pressure water jet device is in two different working states, the refrigerating capacity of the cooler required by the system is quite different. The effective volume and ambient temperature of the tank have great influence on the oil temperature of the hydraulic system.
【学位授予单位】:杭州电子科技大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH137

【参考文献】

相关期刊论文 前10条

1 杨敏官;喻峰;康灿;王育立;;往复式增压器的运动特性分析[J];排灌机械;2009年05期

2 张文杰,雷步芳,李永堂;能量守恒定律在液压系统发热分析中的应用[J];太原重型机械学院学报;2002年01期

3 刘庭成;高压水射流技术及其在清洗中的应用[J];洗净技术;2003年01期

4 王勇,张勇,李从心,黄树槐;液压仿真软件的研究进展[J];系统仿真学报;1998年05期

5 邓劭华;;液压系统油温过高的原因分析和解决方法[J];液压气动与密封;2006年04期

6 钟廷修;液压CAD技术[J];液压与气动;1987年03期

7 张秀恩;液压回路设计中的计算机辅助设计[J];液压与气动;1987年04期

8 徐效增,杨晓峰;液压系统发热原因及对策[J];液压与气动;2004年07期

9 李凤芹;;液压系统的油液温度控制[J];液压与气动;2009年08期

10 陈鹰,谢英俊,徐立;液压仿真技术的新进展[J];液压与气动;1997年01期

相关会议论文 前1条

1 薛胜雄;陈正文;盛业涛;王永强;朱华清;;美国高压水射流技术现状[A];2006年中国机械工程学会年会暨中国工程院机械与运载工程学部首届年会论文集[C];2006年

相关硕士学位论文 前5条

1 魏欣;基于相位式增压器的磨料水射流切割机及其切割模型的研究[D];南京理工大学;2002年

2 陶彬;高压水射流加工理论与技术基础研究[D];大连理工大学;2003年

3 刘海丽;基于AMESim的液压系统建模与仿真技术研究[D];西北工业大学;2006年

4 董庆华;数控高压水射流切割机的研究与设计[D];合肥工业大学;2007年

5 张喜权;树脂砂造型设备液压系统油温控制技术研究[D];大连交通大学;2007年



本文编号:2213925

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2213925.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e09ea***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com