低损耗磁悬浮电主轴的动态性能研究
发布时间:2018-10-09 14:43
【摘要】:磁悬浮电主轴具有极限转速高、无接触磨损和无需润滑等优点,,适用于超高速加工领域,但由于存在铜损和铁损,磁悬浮电主轴的发热问题比较严重。为了简化系统的冷却环节,本文将同极型径向磁悬浮轴承和轴向永磁轴承引入磁悬浮电主轴,以减少其功耗与发热。 本文设计制作了低损耗磁悬浮电主轴的试验装置,包括电控系统和机械部件,给出了系统各环节的主要设计参数。采用等效磁荷法建立了轴向永磁轴承永磁力的计算模型,通过数值计算分析了轴向永磁力随气隙的变化规律。采用有限元分析软件ANSYS10.0分析计算了同极型径向磁悬浮轴承及转子内的磁场分布和功率损耗。采用动力学分析软件ADAMS和科学及工程计算软件MATLAB对该低损耗磁悬浮电主轴系统进行了动态性能联合仿真分析。在理论计算和仿真分析的基础上,本文通过锤击激励和系统高速旋转等试验研究了磁悬浮电主轴的动态性能。 研究结果表明,本文所设计制作的磁悬浮电主轴能够平稳地越过系统的前两阶临界转速,在40000r/min稳定运转,最大振幅为7μm。采用同极型径向磁悬浮轴承和轴向永磁轴承可以保证磁悬浮电主轴具有良好的动态性能,并且系统结构简单,功耗和发热比较小。
[Abstract]:Magnetic levitation motor spindle has the advantages of high limit speed, no contact wear and no lubrication. It is suitable for ultra-high speed machining. However, due to copper and iron loss, the heating problem of magnetic levitation spindle is serious. In order to simplify the cooling of the system, the same pole radial magnetic bearing and axial permanent magnetic bearing are introduced into the magnetic suspension motor spindle in order to reduce the power consumption and heat generation. In this paper, a test device for low loss magnetic levitation motorized spindle is designed and manufactured, including electrical control system and mechanical parts. The main design parameters of each link of the system are given. The calculation model of axial permanent magnetic force of permanent magnetic bearing is established by using the method of equivalent magnetic charge. The variation of axial permanent magnetic force with air gap is analyzed by numerical calculation. The magnetic field distribution and power loss in the same pole radial maglev bearing and rotor are calculated by finite element analysis software ANSYS10.0. The dynamic performance of the low loss magnetic levitation motorized spindle system is simulated by the dynamic analysis software ADAMS and the scientific and engineering calculation software MATLAB. On the basis of theoretical calculation and simulation analysis, the dynamic performance of maglev motorized spindle is studied by hammering excitation and high speed rotation of the system. The results show that the magnetic levitation motor spindle designed in this paper can smoothly cross the first two critical speeds of the system and operate stably in 40000r/min with a maximum amplitude of 7 渭 m. The same pole radial magnetic bearing and axial permanent magnetic bearing can guarantee the good dynamic performance of the magnetic suspension motor spindle, and the system structure is simple, and the power consumption and heat generation are relatively small.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH133.3
本文编号:2259722
[Abstract]:Magnetic levitation motor spindle has the advantages of high limit speed, no contact wear and no lubrication. It is suitable for ultra-high speed machining. However, due to copper and iron loss, the heating problem of magnetic levitation spindle is serious. In order to simplify the cooling of the system, the same pole radial magnetic bearing and axial permanent magnetic bearing are introduced into the magnetic suspension motor spindle in order to reduce the power consumption and heat generation. In this paper, a test device for low loss magnetic levitation motorized spindle is designed and manufactured, including electrical control system and mechanical parts. The main design parameters of each link of the system are given. The calculation model of axial permanent magnetic force of permanent magnetic bearing is established by using the method of equivalent magnetic charge. The variation of axial permanent magnetic force with air gap is analyzed by numerical calculation. The magnetic field distribution and power loss in the same pole radial maglev bearing and rotor are calculated by finite element analysis software ANSYS10.0. The dynamic performance of the low loss magnetic levitation motorized spindle system is simulated by the dynamic analysis software ADAMS and the scientific and engineering calculation software MATLAB. On the basis of theoretical calculation and simulation analysis, the dynamic performance of maglev motorized spindle is studied by hammering excitation and high speed rotation of the system. The results show that the magnetic levitation motor spindle designed in this paper can smoothly cross the first two critical speeds of the system and operate stably in 40000r/min with a maximum amplitude of 7 渭 m. The same pole radial magnetic bearing and axial permanent magnetic bearing can guarantee the good dynamic performance of the magnetic suspension motor spindle, and the system structure is simple, and the power consumption and heat generation are relatively small.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH133.3
【参考文献】
相关期刊论文 前10条
1 张德魁,赵雷,赵鸿滨,冷玮,朱永华;磁悬浮轴承内圆磨床电主轴及其控制[J];轴承;2000年11期
2 陈帝伊;刘淑琴;马孝义;;径向磁悬浮电主轴系统设计研究[J];动力学与控制学报;2009年04期
3 谢振宇;吴凯峰;石庆才;黄佩珍;;同极型结构和零偏置电流控制对磁悬浮轴承损耗影响的试验分析[J];航空动力学报;2011年02期
4 王海,胡业发,宋德超,王晓光;磁悬浮电主轴制造精度的保证方法[J];机械工程师;2002年07期
5 张钢;刘汝卫;殷庆振;阮娟;刘莹;;工业应用型永磁悬浮轴承关键技术[J];机械工程师;2009年12期
6 严武升,刘宏;超高速电主轴的几个问题[J];机械科学与技术;1998年03期
7 张剀,赵雷,赵鸿宾;磁悬浮飞轮低功耗控制方法仿真研究[J];清华大学学报(自然科学版);2004年03期
8 李波;黄守道;;超高速数控磨床磁浮电主轴的研究[J];精密制造与自动化;2006年04期
9 徐欣;谢振宇;龙亚文;王晓;周红凯;;混合磁悬浮轴承转子系统的仿真分析[J];系统仿真技术;2012年01期
10 谢振宇;张景亭;高华;黄佩珍;;带阻尼器磁悬浮轴承转子系统的不平衡响应[J];中国机械工程;2009年03期
相关博士学位论文 前1条
1 孟杰;高速电主轴动力学分析与实验研究[D];重庆大学;2008年
本文编号:2259722
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2259722.html