多自由度碰撞系统的动力学研究
[Abstract]:In recent years, experts at home and abroad have made great progress in the study of the Hopf bifurcation of the periodic motion of the two-degree-of-freedom collision vibration system with one degree of freedom or one side rigid constraint, but the system parameters are more complex and the dynamic response formula is more complicated. There is little research on the multi-degree-of-freedom impact vibration system which is sensitive to the stability of the system, and the research method is mainly numerical analysis. However, the problem of shock vibration often exists in engineering practice, such as machinery, vehicle and so on. It is urgent to understand the dynamic behavior of this kind of system more comprehensively. Therefore, in engineering practice, it is of great significance to study the impact vibration system with multiple degrees of freedom with clearance, so this paper makes a comprehensive analysis of the impact vibration system with two degrees of freedom and the impact vibration system with four degrees of freedom. The main contents of this paper are as follows: 1. In this paper, the dynamic behaviors of two typical two degree of freedom impact vibration systems and a four degree of freedom impact vibration system are analyzed. By establishing the physical and mathematical models of the impact vibration system, the regular mode matrix method is used to decouple the impact vibration system. The analytical solution and linearization matrix of the periodic motion of the collisional vibration system and the Poincare map of each system are obtained by using the analytical method. 2. The instability and bifurcation of fixed point of planar mapping are analyzed by using Poincare mapping theory. When the eigenvalue of the linearization matrix is 1 or -1, the saddle node or doubling bifurcation may occur. When the linear matrix has a double eigenvalue passing through the unit circle, the system will have a codimensional two-bifurcation phenomenon. By selecting appropriate system parameters and combining with the trend diagram of linear matrix eigenvalue traversing unit circle, the dynamical behavior of bifurcation and chaotic evolution of linear matrix eigenvalue in the above cases is analyzed. 3. In this paper, the complex dynamical behavior of Hopf bifurcation and chaos is studied for the physical model of a specific multi-degree-of-freedom collisional vibration system, and the ergodic almost periodic motion of the system is given. Poincare section of periodic motion and torus doubling to chaos. 4. Based on the results of numerical simulation, the influence of the main control parameters on the periodic motion of the system is analyzed. It is found that the high dimensional impact vibration system has a high sensitivity, especially the excitation frequency. The parameters such as clearance and recovery coefficient have great influence on the periodic motion of the system. Therefore, it is necessary to select the optimal parameters of the system for the optimal design of the mechanical impact vibration system.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH113.1
【参考文献】
相关期刊论文 前10条
1 乐源,谢建华,丁旺才;一类两自由度碰撞振动系统的Hopf分岔和混沌[J];动力学与控制学报;2004年03期
2 丁旺才,谢建华,李国芳;三自由度碰撞振动系统的周期运动稳定性与分岔[J];工程力学;2004年03期
3 李万祥,丁旺才,周勇;一类三自由度含间隙系统的分岔与混沌[J];工程力学;2005年05期
4 罗冠炜;俞建宁;尧辉明;褚衍东;;小型振动冲击式打桩机的周期运动和分岔[J];工程力学;2006年07期
5 马永靖;丁旺才;;碰撞振动系统四阶共振下的Hopf分岔和次谐分岔[J];工程力学;2007年07期
6 丁旺才;张有强;张庆爽;;含干摩擦振动系统的非线性动力学分析[J];工程力学;2008年10期
7 张艳龙;王丽;;三自由度双侧刚性约束振动系统的概周期运动[J];工程力学;2009年02期
8 刘彦琦;张伟;;参数激励粘弹性传动带的分岔和混沌特性[J];工程力学;2010年01期
9 申延智;刘宏民;熊杰;杜国君;;厚板轧机含间隙主传动系统混沌动力学分析[J];工程力学;2010年07期
10 罗冠炜,谢建华;一类含间隙振动系统的周期运动稳定性、分岔与混沌形成过程研究[J];固体力学学报;2003年03期
相关博士学位论文 前8条
1 张耀强;陀螺仪转子系统非线性动力特性及稳定性分析[D];西安电子科技大学;2011年
2 冯治恒;螺旋锥齿轮多体多自由度非线性动力学研究[D];重庆大学;2010年
3 丁旺才;多自由度碰撞振动系统的环面分岔与混沌研究[D];西南交通大学;2004年
4 沈建和;非线性振动系统的分岔、混沌及相关控制[D];中山大学;2008年
5 王炜;待定固有频率法与非线性动力系统的复杂动力学[D];天津大学;2009年
6 高美娟;六维非线性系统的复杂动力学研究[D];北京工业大学;2010年
7 吕乐丰;轴向行进弦及索的非线性振动和稳定性分析[D];大连理工大学;2010年
8 赵德敏;非线性颤振系统的分岔与混沌[D];天津大学;2010年
,本文编号:2270614
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2270614.html