液压往复泵与泵用转阀及控制技术的研究
[Abstract]:Compared with mechanical reciprocating pump, hydraulic reciprocating pump has many advantages, so the research and development of hydraulic reciprocating pump has become one of the most valuable research topics. In this paper, the development history and research status of hydraulic reciprocating pump are reviewed at first, and several problems that need to be solved in the research process of hydraulic reciprocating pump, such as commutative impact, flow rate and pressure stability of total pump, are clarified. Therefore, a new type of rotary valve is designed to control the system, and the above problems are solved satisfactorily. This paper adopts the research method of combining theory, design, mathematical analysis and computer simulation, that is, on the basis of deeply studying the working principle and characteristics of the rotary valve, the rotary valve which can make the flow rate change linearly is designed. The model and simulation model of hydraulic three cylinder reciprocating pump system based on rotary valve control and double hydraulic station oil supply are established by calculation. Through demonstration, the valve can completely meet the design requirements. Specific content includes; The main contents are as follows: (1) the structure and principle of the rotary valve are systematically analyzed, and it is theoretically concluded that the piston (or plunger) of the hydraulic reciprocating pump can reciprocate alternately according to the phase difference set by the rotary valve. Through theoretical analysis and calculation, the relationship between valve core hole and valve sleeve hole in circumferential opening is obtained. It is obtained that the piston can reach the dead point before and after, and the relationship between the valve core hole and the valve sleeve hole should have the theoretical maximum overcurrent area; The relationship between the stability of valve sleeve and valve core orifice and flow rate superposition and the continuous motion of hydraulic cylinder piston are obtained. (3) through the theoretical research on the pump valve of hydraulic three-cylinder reciprocating pump based on rotary valve control, The corresponding relationship between the flow rate through the pump valve and the instantaneous flow rate discharged or inhaled through the hydraulic end piston is clearly obtained. It lays a theoretical foundation for establishing the simulation model of the pump valve. (4) through the calculation of the key components and the in-depth study of the AMESim simulation platform, the simulation model of the hydraulic three-cylinder reciprocating pump system based on the dual hydraulic station oil supply and the control of the rotary valve is established. On this basis, the simulation model of four-cylinder and six-cylinder rotary valve control is established. The establishment of this series of simulation models has accumulated experience for the research of hydraulic reciprocating pump based on AMESim. (5) comparing and analyzing the simulation results for different number of cylinders. The feasibility of the rotary valve in solving the problems of reversing impact and flow and pressure fluctuation in hydraulic reciprocating system is verified. This is consistent with the theoretical analysis, which in turn proves that the established model and simulation results are also true and reliable. According to the pre-selected hydraulic cylinder and the set piston stroke, the overflow area of the rotary valve and the pressure of the hydraulic station can be adjusted repeatedly. Finally, the ideal total pump superposition flow curve and pressure curve can be obtained. Then the optimal valve opening of the hydraulic cylinder can be determined. This method can provide reference for the manufacture of rotary valve. The initial position of the cylinder piston is simulated in any position to verify the adaptive capability of the phase of the rotary valve.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH137.5
【相似文献】
相关期刊论文 前10条
1 吴福森;黄宜坚;;砌块成形机液压振动信号的AR双谱分析[J];中国机械工程;2011年16期
2 梁冰;;自卸车限压阀的正确使用[J];品牌与标准化;2011年16期
3 白政民;杨飞;;ZY40汽车起重机伸缩机构液压系统设计[J];机床与液压;2011年14期
4 ;[J];;年期
5 ;[J];;年期
6 ;[J];;年期
7 ;[J];;年期
8 ;[J];;年期
9 ;[J];;年期
10 ;[J];;年期
相关会议论文 前9条
1 李德兴;彭学;黄建勋;覃祖智;;超高压转阀式手动液压换向阀的研制[A];第十一届全国混凝土及预应力混凝土学术交流会论文集[C];2001年
2 周曲珠;芮延年;;基于模糊灰色理论的汽车转阀特性的研究[A];苏州市自然科学优秀学术论文汇编(2008-2009)[C];2010年
3 王同建;张子达;刘昕晖;罗士军;;全液压转向器数学模型的建立与仿真[A];中国力学学会学术大会'2005论文摘要集(上)[C];2005年
4 闫保根;熊建军;;一种流量控制阀在液压转阀油路系统中的应用[A];第五届河南省汽车工程科技学术研讨会论文集[C];2008年
5 郭晓林;季学武;陈奎元;;电控液压助力转向系统助力特性研究与分析方法[A];第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议论文集[C];2008年
6 吴刚;;浆纱机经轴退绕张力自动控制的研讨[A];2000年晋冀鲁豫鄂蒙六省区机械工程学会学术研讨会论文集(河南分册)[C];2000年
7 曹泓怡;李志刚;周磊;;自动控制汽车制动轮毂淋水降温系统的研究[A];第七届河南省汽车工程科技学术研讨会论文集[C];2010年
8 李永波;李辉;;转向控制阀滞后问题分析[A];经济策论(下)[C];2011年
9 李永波;李辉;;转向控制阀滞后问题分析[A];第八届河南省汽车工程科技学术研讨会论文集(下)[C];2011年
相关重要报纸文章 前5条
1 王坤平;转阀式液压动力转向器的检查和调整[N];中国汽车报;2001年
2 张石;重汽集团完成转阀式转向器开发试制[N];中国交通报;2003年
3 刘婕;新红岩总成及零部件打入国际市场[N];现代物流报;2008年
4 记者 李志悦;为主机厂配套规模扩大[N];中国汽车报;2000年
5 尹其浩 邵光鹏;爱琢磨的攻关高手[N];中国知识产权报;2000年
相关博士学位论文 前2条
1 贾朋;钻井液连续波发生器设计与信号传输特性实验研究[D];中国石油大学;2010年
2 孙营;重型商用车转向系统建模及整车动力学仿真研究[D];华中科技大学;2011年
相关硕士学位论文 前10条
1 袁庆洪;液压往复泵与泵用转阀及控制技术的研究[D];西南石油大学;2011年
2 奚润;基于热—结构耦合的液压动力转向器结构强度研究[D];江苏大学;2009年
3 蔡庄奇;流量控制式汽车液压助力转向系统的设计与开发[D];广东工业大学;2008年
4 李荣喜;井下旋转控制压力信号发生器的设计与研究[D];中国石油大学;2007年
5 唐省名;液压驱动往复泵换向冲击研究及闭式系统设计[D];中南大学;2011年
6 石银;全液压转向器的流场分析及其特性研究[D];江苏大学;2007年
7 贾光;新型振动桩机耦合控制系统及仿真研究[D];东北大学;2009年
8 王爱荣;汽车循环球动力转向器研发[D];长江大学;2012年
9 林建涛;电动液压助力转向系统动力学分析与能量分布研究[D];湖南大学;2011年
10 刘维艳;液压助力转向建模及对操纵稳定性的影响分析[D];吉林大学;2011年
,本文编号:2364418
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2364418.html