大型离心压缩机远程诊断关键技术研究
[Abstract]:Centrifugal compressor is widely used in the production of petroleum, chemical and other departments of large-scale rotating machinery equipment, to ensure the centrifugal compressor equipment utilization rate, for petroleum, chemical enterprises have an important significance. Because of the wide distribution of large centrifugal compressors, it is of great significance for the manufacturers to monitor the running state of the equipment in real time through the Internet, which is of great significance for the fault diagnosis in the later stage of the equipment. In order to accurately diagnose the fault of large centrifugal compressor, it is necessary to solve the key problems such as the effective collection, transmission, storage, processing and accurate judgment of fault data. Based on the study of data transmission characteristics and data storage mechanism of a remote diagnosis center, this paper presents a transmission method using breakpoint continuation function and a storage mechanism of sensitive monitoring method. It effectively solves the problems of data transmission integrity and excessive data storage. The haar,bior1.1,db4 wavelet is used to transform and compress the rotor unbalance signal. The three kinds of wavelets can reflect the characteristics of the fault signal after the transformation. Among them, the haar,bior1.1 wavelet achieves a good compression ratio for the rotor unbalance signal transform compression. Therefore, it is necessary to select the proper wavelet to transform and compress the fault diagnosis signal. Based on the study of typical faults and analysis methods of large centrifugal compressor and the actual situation of remote fault diagnosis, a remote monitoring and diagnosis system is developed by using LabVIEW software. The system includes data acquisition, remote transmission, filtering, data transformation, etc. Time domain analysis, frequency domain analysis and axis trajectory analysis module. The typical faults of rotor unbalance and oil film oscillation of large centrifugal compressor are analyzed and verified in production practice.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP274;TH452
【参考文献】
相关期刊论文 前10条
1 张兴然,赵成勇,魏清;基于小波变换的二维图像识别与信号压缩[J];电力科学与工程;2005年02期
2 洪月好;;二进正交小波变换在音频信号压缩中的应用研究[J];上海电力学院学报;2007年03期
3 蔡广斌,温宾江;状态检测、故障诊断技术在离心压缩机上的应用[J];风机技术;2000年02期
4 李鑫;;基于LabVIEW的船用柴油机故障诊断系统数据采集[J];福建电脑;2009年03期
5 丁克北;离心压缩机故障诊断研究现状及发展趋势[J];炼油与化工;2005年02期
6 石川;张琳娜;刘武发;;基于LabVIEW的数据采集与信号处理系统的设计[J];机械设计与制造;2009年05期
7 吴笛;;基于Labview的机械故障远程诊断系统的设计与实现[J];机械传动;2011年01期
8 韩捷,关惠玲,梁川,杨金才;矢谱── 一种实用的旋转机械故障诊断分析方法[J];机械强度;1998年03期
9 李灵芝,江晶,马晓岩;小波变换在雷达原始视频信号压缩中的应用[J];空军雷达学院学报;2004年03期
10 魏磊;孙发鱼;李建立;;基于小波变换的遥测速变信号实时压缩技术研究[J];科学技术与工程;2010年06期
相关博士学位论文 前2条
1 蒋鹏;小波理论在信号去噪和数据压缩中的应用研究[D];浙江大学;2004年
2 盛晨兴;挖泥船动力机械远程诊断系统关键技术研究[D];武汉理工大学;2009年
相关硕士学位论文 前6条
1 张松梅;石化行业几种离心式压缩机故障诊断的应用[D];大连理工大学;2006年
2 赵标;基于小波变换的化工过程数据实时压缩算法及应用研究[D];浙江大学;2006年
3 张庆涛;离心压缩机智能故障诊断方法研究[D];大庆石油学院;2006年
4 赵伟;船舶柴油机监测与故障诊断技术研究[D];大连海事大学;2006年
5 许海英;气象雷达原始回波数据无损压缩算法研究[D];电子科技大学;2007年
6 向睿;在轨卫星远程诊断关键技术研究[D];国防科学技术大学;2009年
,本文编号:2368052
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2368052.html