当前位置:主页 > 科技论文 > 机械论文 >

受内压无折边偏心锥壳的应力测试和强度的影响参数分析

发布时间:2018-12-10 09:46
【摘要】:偏心锥壳普遍应用于石油化工领域,釜式重沸器中连接大小端圆筒的结构即为典型的偏心锥壳。由于结构的不对称性,偏心锥壳在同一轴截面上沿圆周方向和沿着轴线方向上的应力分布与正锥壳都不相同。对于锥角小于30°的偏心锥壳,最新的GB150和ASMEVIII-2中偏保守地规定偏心锥壳的设计参照正锥壳进行。为了更好地了解偏心锥壳的应力分布状况,本论文对承受内压载荷的偏心锥壳进行了实验研究和有限元应力分析。主要研究内容如下: 根据JB4732-1995《钢制压力容器—分析设计标准》,设计并制造了带偏心锥角为45°的无折边偏心锥壳的小型立式压力容器。比较偏心锥壳的各部位的应力分布实验测定结果和利用ANSYS有限元软件分析的应力分布结果发现,两者结果基本一致,验证了有限元计算结果的准确性。根据有限元结果对偏心锥壳部位进行应力评定,各项应力均在允许范围内。有限元计算得到的偏心锥壳的极限载荷为3.37MPa。 在线弹性材料本构关系下,考虑偏心锥角、大小端筒体直径、锥壳厚度等不同参数对偏心锥壳的影响,对偏心锥壳进行参数建模,分析各种参数变化对偏心锥壳应力分布的影响规律。 采用无量纲分析法,对偏心锥壳进行参数化建模,分析了各种参数变化对偏心锥壳应力分布的影响规律,建立了最大应力强度和内压之比与偏心锥角α、大小端筒体直径比h,小端筒体直径与锥壳厚度之比m的多元线性回归方程并给出了公式的适用范围为计算所得的最大应力强度小于材料的屈服极限。 内压为3.2MPa,以理想弹塑性材料本构关系模拟实际材料的本构关系,分析了偏心锥壳应力分布规律,无量纲参数间的关联式,提供了超过以上公式适用范围的应力分布情况。得出结论为超过以上公式适用范围时,最大应力强度等于材料的屈服极限,为无折边偏心锥壳的应力分析提供了一种方便快捷的方法。
[Abstract]:Eccentrically conical shell is widely used in petrochemical industry. The structure of the small and small end cylinder in the autoclave reboiler is a typical eccentricity conical shell. Because of the asymmetry of the structure, the stress distribution of the eccentric cone shell along the circumference direction and along the axis direction is different from that of the normal cone shell in the same axial section. For eccentricity conical shells with cone angle less than 30 掳, the design of eccentrically conical shells is specified conservatively by the latest GB150 and ASMEVIII-2 with reference to the positive conical shells. In order to better understand the stress distribution of eccentrically conical shells, the experimental study and finite element stress analysis of eccentric conical shells subjected to internal pressure are carried out in this paper. The main research contents are as follows: according to JB4732-1995, a small vertical pressure vessel with 45 掳eccentric cone angle is designed and manufactured. Comparing the experimental results of stress distribution in different parts of eccentric conical shells with the results of stress distribution analyzed by ANSYS finite element software, it is found that the two results are basically the same, which verifies the accuracy of the finite element calculation results. The stress of eccentrically conical shell is evaluated according to the finite element results, and all stresses are within the allowable range. The limit load of eccentric conical shell calculated by finite element method is 3.37 MPA. Considering the influence of different parameters such as the eccentric cone angle, the diameter of the end cylinder and the thickness of the cone shell on the eccentricity conical shell, the parameter modeling of the eccentric conical shell is carried out under the constitutive relation of online elastic materials. The influence of various parameters on the stress distribution of eccentric conical shell is analyzed. Using dimensionless analysis method, parameterized modeling of eccentric conical shell is carried out. The influence of various parameters on stress distribution of eccentric cone shell is analyzed. The ratio of maximum stress intensity and internal pressure to eccentricity cone angle 伪 and diameter ratio of end tube to tube are established. The multivariate linear regression equation of the ratio m of the diameter of the small end cylinder to the thickness of the cone shell is obtained and the applicable range of the formula is given as the maximum stress intensity calculated is less than the yield limit of the material. The internal pressure is 3.2 MPA. The constitutive relation of ideal elastoplastic material is used to simulate the constitutive relation of practical material. The stress distribution law of eccentric conical shell is analyzed and the correlation between dimensionless parameters is analyzed. The stress distribution beyond the applicable range of the above formula is provided. It is concluded that the maximum stress intensity is equal to the yield limit of the material when the application range of the above formula is exceeded, which provides a convenient and quick method for the stress analysis of eccentric conical shells without folded edges.
【学位授予单位】:浙江工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH49

【参考文献】

相关期刊论文 前8条

1 刘铁刚,迟道才,于文颖,王冬梅,陈胜利;辽宁地区潜水蒸发规律研究[J];沈阳农业大学学报;2005年01期

2 曾春平,戚冬红,杨波涛;基于MATLAB的理想气体定容比热容的回归分析[J];云南化工;2005年03期

3 闫胜昝,高炳军,王俊宝;折边锥形封头过渡区应力有限元分析[J];石油化工设备;2002年03期

4 易芳;采用MATLAB的线性回归分析[J];兵工自动化;2004年01期

5 李进军,刘祥正,刘土光;斜圆锥壳的应力分析[J];武汉造船;1998年03期

6 刘福天,王妍,刘丹,金成云,王杰;螺旋锚极限抗拔承载力的回归分析[J];沈阳建筑大学学报(自然科学版);2005年03期

7 郑津洋,开方明,陈西南,石平;欧盟标准EN13445简介及其与我国压力容器标准的比较[J];压力容器;2003年05期

8 陈小邹,陈良增;潜艇锥柱结合过渡结构的有限元应力分析[J];舰船科学技术;2004年S1期

相关会议论文 前1条

1 李永泰;黄金国;陈永东;崔军;张海波;;斜锥壳固定管板式换热器的有限元分析[A];第六届全国压力容器学术会议压力容器先进技术精选集[C];2005年

相关硕士学位论文 前2条

1 李耀军;分段锥形裙座及偏锥壳体的三维有限元分析[D];北京化工大学;2006年

2 杨国政;基于ANSYS斜锥壳固定管板釜式重沸器有限元分析[D];河北工业大学;2007年



本文编号:2370375

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2370375.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户49868***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com