基于神经网络的工程机械远程故障诊断技术研究
[Abstract]:The remote fault diagnosis system is a system that connects the onsite terminal and the remote technology diagnosis center through GPRS wireless technology, and realizes immediate response, resource sharing, remote monitoring and remote diagnosis. It not only has the advantages of traditional fault diagnosis service, but also overcomes the limitation of time and region. The components of construction machinery are greatly affected by the environment, temperature, water vapor, dust and vibration. As the core of construction machinery, hydraulic system has a complex structure, and if failure occurs, it will directly affect its working efficiency. There were even major accidents. Remote fault detection and diagnosis for hydraulic system can shorten the downtime of construction machinery and improve economic efficiency. This paper takes the main hydraulic system of HB48 concrete pump car of a heavy machinery company as the research object, adopts ATmega16 single chip microcomputer as the main control core and BenQ M22A GPRS module as the transmission unit, and designs a remote data acquisition terminal. On the basis of analyzing the common fault mode and mechanism of hydraulic system and the working principle of neural network, the BP algorithm and Hopfield optimized BP algorithm are applied to the fault diagnosis of hydraulic system of pump car. Through the study and comparison of fault diagnosis methods of hydraulic system based on BP,H-BP and PSO neural networks, this paper proposes a network that optimizes the weight matrix of Hopfield network by using particle swarm optimization (PSO), and preprocesses the original data. Then the fault diagnosis method of BP algorithm, that is, PSO-H-BP algorithm, is applied to the fault diagnosis of hydraulic system to verify its validity and accuracy. The experimental results show that the data acquisition and transmission terminal constructed by ATmega16 and BenQ M22A can realize real-time acquisition, fast communication and good practicability, and the BP,H-BP of PSO-H-BP algorithm has higher accuracy and reliability.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:TH165.3;TP183
【参考文献】
相关期刊论文 前10条
1 郭X;陈欠根;谭祖湘;李渊博;;神经网络在复杂液压系统故障诊断中的应用[J];机床与液压;2006年10期
2 毋文峰;王汉功;陈小虎;;液压泵故障诊断的小波-神经网络方法[J];机床与液压;2007年05期
3 唐志航;杨保安;;一种改进的BP神经网络在故障诊断中的应用研究[J];机床与液压;2007年11期
4 陈明旭;龚国芳;徐晓东;杨华勇;;基于BP神经网络的液压系统油源温度控制[J];机床与液压;2008年06期
5 巩文科;李心广;赵洁;;基于BP神经网络与专家系统的故障诊断系统[J];计算机工程;2007年08期
6 王司,岳琪,杜洪起;液压系统故障的神经网络诊断法[J];黑龙江工程学院学报;2001年02期
7 张树团;张晓斌;雷涛;邸亚洲;;基于粒子群算法和支持向量机的故障诊断研究[J];计算机测量与控制;2008年11期
8 刘素梅;混凝土输送泵故障模糊诊断的研究[J];建筑机械;2005年11期
9 梁春苗;王小波;姚亚峰;杜小山;汪芸;;应用BP神经网络诊断全液压坑道钻机故障[J];煤田地质与勘探;2009年05期
10 杨叔子;设备诊断技术的现状与未来[J];设备管理与维修;1995年11期
相关会议论文 前1条
1 潘宏侠;黄晋英;毛鸿伟;刘振旺;;基于粒子群优化的故障特征提取技术研究[A];第九届全国振动理论及应用学术会议论文集[C];2007年
相关博士学位论文 前1条
1 饶泓;基于多源信息融合与Rough集理论的液压机故障诊断方法研究[D];南昌大学;2009年
,本文编号:2375042
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2375042.html