当前位置:主页 > 科技论文 > 机械论文 >

基于流形学习的滚动轴承早期故障识别方法研究

发布时间:2019-02-14 14:16
【摘要】:滚动轴承作为旋转机械装备中关键且易发生故障的零部件之一,其运行状态直接影响整个装备系统的性能,因此对滚动轴承进行状态识别与故障诊断研究具有重要意义。信号降噪和故障特征提取是状态识别与故障诊断中最核心的内容,由于滚动轴承运行环境复杂,干扰多、噪声大,且故障信号多为非平稳非线性信号,从而大大降低了传统降噪与故障特征提取方法的有效性。为此,本文以滚动轴承为研究对象,针对其强背景噪声下的早期故障振动信号特点,将流形方法与其它现代振动信号分析方法相结合,对滚动轴承故障信号的降噪和特征提取问题展开深入研究。论文主要内容如下: 1.论述了选题的背景意义及国内外滚动轴承故障诊断的发展进程;对当代滚动轴承故障诊断中的降噪和故障特征提取两个关键问题进行了详细综述;剖析了滚动轴承常见故障形式及其成因与后果;阐述了滚动轴承的振动机理及时域、频域、时频域振动分析理论的具体使用方法。 2.针对滚动轴承早期微弱故障特征易被噪声及干扰成分所淹没的问题,将KPCA流形、EMD和LTSA流形相结合,提出了改进EMD的早期微弱故障信号降噪方法。首先在EMD分解前先进行一次KPCA流形降噪,然后在EMD分解基础上将所有IMF系数利用LTSA流形算法提取其低维流形分量,并将其求和得到新信号,实现降噪。该方法不仅充分利用了EMD完全自适应性分析非平稳非线性信号的优势,还能有效克服噪声对EMD分解效果的影响,并很好地解决了常规EMD应用中忽略大部分分量造成故障信息丢失的问题。工程实际信号对比分析验证了该方法的有效性与优越性。 3.针对如何有效提取非平稳非线性故障信号敏感特征问题,提出了基于二维流形-Hilbert时频谱的滚动轴承时频故障特征提取方法。首先在Hilbert时频分析基础上,应用改进LPP算法的二维LPP流形算法提取信号流形成分,然后定义了奇异值熵定量衡量不同故障状态下流形特征的差异。该方法直接以二维信息为研究对象避免了一维流形算法需将二维信息转化为向量带来的信息损失,与一般PCA方法相比更能发现隐藏在高维数据流形结构中的局部数据特征。工程信号分析验证了该方法的有效性。流形奇异值熵与概率神经网络结合应用,进一步证实了该方法具有很高的可靠性。 4.针对工程实际操作与应用问题,开发了一套滚动轴承故障振动分析系统。将信号处理技术、故障诊断技术、数据库知识、虚拟仪器技术及人机交互技术相结合,采用递进式分模块进行研制,满足了工程现场方便快捷实用的需求。
[Abstract]:As one of the key and fault prone parts in rotating machinery equipment, the running state of rolling bearings directly affects the performance of the whole equipment system, so it is of great significance to study the status identification and fault diagnosis of rolling bearings. Signal de-noising and fault feature extraction are the core contents in state identification and fault diagnosis. Because of the complex running environment of rolling bearing, the disturbance is much, the noise is large, and the fault signal is mostly non-stationary and nonlinear signal. Thus, the effectiveness of the traditional methods of noise reduction and fault feature extraction is greatly reduced. Therefore, in this paper, the rolling bearing is taken as the research object. According to the characteristics of its early fault vibration signal under strong background noise, the manifold method is combined with other modern vibration signal analysis methods. The noise reduction and feature extraction of rolling bearing fault signals are studied in depth. The main contents of the thesis are as follows: 1. The background significance of the topic and the development process of rolling bearing fault diagnosis at home and abroad are discussed, and the two key problems of noise reduction and fault feature extraction in contemporary rolling bearing fault diagnosis are summarized in detail. This paper analyzes the common fault forms of rolling bearings and their causes and consequences, and expounds the vibration mechanism of rolling bearings and the concrete application methods of the theory of vibration analysis in time domain, frequency domain and time and frequency domain. 2. Aiming at the problem that the early weak fault characteristics of rolling bearings are easily submerged by noise and interference components, a new method for reducing noise of early weak fault signals based on improved EMD is proposed by combining KPCA manifold, EMD and LTSA manifold. First, KPCA manifold denoising is performed before EMD decomposition, then all IMF coefficients are extracted by LTSA manifold algorithm on the basis of EMD decomposition, and the new signal is obtained by the sum of IMF coefficients, which can be used to reduce noise. This method not only makes full use of the advantage of EMD complete adaptation to analyze nonstationary nonlinear signals, but also effectively overcomes the effect of noise on EMD decomposition. The problem of losing fault information caused by neglecting most components in conventional EMD applications is well solved. The effectiveness and superiority of the method are verified by comparing and analyzing the actual signals in engineering. 3. To solve the problem of how to effectively extract the sensitive features of non-stationary nonlinear fault signals, a novel time-frequency fault feature extraction method for rolling bearings based on two-dimensional manifold and Hilbert time-frequency spectrum is proposed. On the basis of Hilbert time-frequency analysis, the two-dimensional LPP manifold algorithm based on improved LPP algorithm is applied to extract the signal flow formation fraction, and then the singular value entropy is defined to quantitatively measure the difference of manifold characteristics in different fault states. This method takes two-dimensional information as the research object directly and avoids the information loss caused by the one-dimensional manifold algorithm which needs to transform the two-dimensional information into vectors. Compared with the general PCA method, it can find the local data features hidden in the high-dimensional data stream shape structure. The engineering signal analysis verifies the effectiveness of the method. The application of Manifold singular value entropy and probabilistic neural network further proves that this method is highly reliable. 4. A rolling bearing fault vibration analysis system is developed for practical operation and application. The signal processing technology, fault diagnosis technology, database knowledge, virtual instrument technology and human-computer interaction technology are combined to develop the progressive sub-module.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2014
【分类号】:TH133.33;TH165.3

【参考文献】

相关期刊论文 前10条

1 王广斌;黄良沛;赵先琼;;基于分形维和局部切空间均值重构的非线性降噪方法[J];电子测量与仪器学报;2010年08期

2 赵雯雯;曾兴雯;;一种新的EMD去噪方法[J];电子科技;2008年05期

3 成忠;诸爱士;陈德钊;;ISOMAP-LDA方法用于化工过程故障诊断[J];化工学报;2009年01期

4 曾大有;王晓威;邓风茹;;量子力学中的Heisenberg测不准原理的数学推导以及在小波分析中的应用[J];华北航天工业学院学报;2006年04期

5 杨宇,于德介,程军圣,丁戈;经验模态分解(EMD)在滚动轴承故障诊断中的应用[J];湖南大学学报(自然科学版);2003年05期

6 张振跃,查宏远;线性低秩逼近与非线性降维[J];中国科学(A辑:数学);2005年03期

7 邓蕾;李锋;姚金宝;;基于流形学习和隐Markov模型的故障诊断[J];计算机集成制造系统;2010年10期

8 詹宇斌;殷建平;刘新旺;;局部切空间对齐算法的核主成分分析解释[J];计算机工程与科学;2010年06期

9 李文斌;张建宇;;LabVIEW和MATLAB混合编程在齿轮箱故障诊断系统中的应用[J];机械设计与制造;2011年04期

10 廖广兰,史铁林,来五星,姜南,刘世元;基于核函数PCA的齿轮箱状态监测研究[J];机械强度;2005年01期

相关博士学位论文 前6条

1 李长宁;机械故障信号统计建模及其故障诊断方法的研究[D];哈尔滨工业大学;2010年

2 彭兵;基于改进支持向量机和特征信息融合的水电机组故障诊断[D];华中科技大学;2008年

3 郭磊;基于核模式分析方法的旋转机械性能退化评估技术研究[D];上海交通大学;2009年

4 伍小芹;非平稳信号的压缩算法研究[D];北京交通大学;2012年

5 陆金铭;船舶推进轴系的动态影响因素及EMD故障诊断方法研究[D];上海交通大学;2013年

6 周源;基于快速流形学习方法的高光谱遥感非线性特征提取研究[D];武汉大学;2013年



本文编号:2422281

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2422281.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户544b0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com