基于谐波小波包和神经网络的旋转机械故障诊断系统研究
[Abstract]:At present, vibration detection is the main means of fault diagnosis for large-scale rotating machinery. In general, complex dynamic and non-stationary vibration signals can be generated when rotating machinery fails. Therefore, how to accurately extract the characteristics of such signals is the first condition of fault diagnosis. Harmonic wavelet theory is very suitable for feature extraction of non-stationary signals based on its strict "box-shaped" characteristics in frequency domain, but because of the complexity of the vibration signal of rotating machinery, This method has not been widely used in fault diagnosis of rotating machinery. In this paper, based on the research of other scholars, a method of automatically extracting the energy feature of rotating machinery vibration signal by harmonic wavelet packet is proposed, which avoids the influence of different rotational speed and sampling frequency on the signal feature extraction. In this paper, the significance and development of rotating machinery fault diagnosis are introduced briefly, and several typical traditional signal processing methods are selected, and their advantages and disadvantages are compared. Then, the harmonic wavelet theory is studied systematically, and its advantages in the feature extraction of weak signal, local mutation signal and near-frequency signal are analyzed in detail through the simulation signal. The energy feature extraction method of harmonic wavelet packet at different rotation speed and different sampling frequency is studied. Secondly, the basic structure and algorithm of Elman neural network are introduced, and compared with BP neural network, its advantages in learning stability, convergence speed and fault recognition rate are highlighted. Finally, the idea of combining harmonic wavelet packet with Elman neural network is put forward, and the basic structure of intelligent fault diagnosis system for rotating machinery is designed based on this idea. The intelligent fault diagnosis system of rotating machinery based on harmonic wavelet packet and Elman neural network is designed based on the method of LabVIEW and MATLAB. By simulating four typical faults of rotor on the rotor test-bed, the vibration signal is collected and the diagnosis system is inputted. The results show that the diagnosis performance of the system is good.
【学位授予单位】:燕山大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165.3
【参考文献】
相关期刊论文 前10条
1 杨超;王志伟;;基于Elman神经网络的滚动轴承故障诊断方法[J];轴承;2010年05期
2 梁晓刚;张永昌;翟弘泰;;LabVIEW与Matlab混合编程的实现[J];电脑开发与应用;2009年09期
3 黄永东;;转子不平衡现象的分析[J];发电设备;2009年03期
4 肖忠会;谐波小波分析及其在旋转机械信号分析中的应用[J];风机技术;2001年01期
5 赵玉成,袁树清,许庆余;奇异信号的谐波小波分析[J];工程力学;2000年03期
6 丁康;DAS动态信号分析与故障诊断系统[J];电工技术杂志;1996年03期
7 薛全会;程秀芳;姚桂艳;孙丽媛;;小波分析的应用现状与前景[J];河北理工学院学报;2006年01期
8 蔡秀红;;转子不对中的分析和处理[J];化工机械;2010年03期
9 黄金平;任兴民;;一种识别单盘柔性转子不平衡的新方法[J];航空动力学报;2008年02期
10 王旭红;何怡刚;;基于小波包和Elman神经网络的异步电机转子断条故障诊断方法[J];湖南大学学报(自然科学版);2010年05期
相关博士学位论文 前1条
1 胡爱军;Hilbert-Huang变换在旋转机械振动信号分析中的应用研究[D];华北电力大学(河北);2008年
相关硕士学位论文 前2条
1 邓堰;转子故障智能诊断中的特征提取与选择技术研究[D];南京航空航天大学;2008年
2 叶进生;谐波小波包在旋转机械故障诊断中的应用研究[D];华北电力大学(河北);2009年
本文编号:2443094
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2443094.html