基于信息熵的涡旋压缩机的故障诊断研究
[Abstract]:In recent years, the platform of the test system based on scroll compressor and the analysis of its vibration and noise have shown a very broad application prospect, but it is still difficult to meet the requirements of monitoring the running state of scroll compressor. Because the application time of scroll compressor in China is not very long, the fault analysis of scroll compressor in the process of its use is not much, and it is still in the initial stage of building test platform to describe its working state by traditional single spectrum analysis. The performance data of its operation condition can not be obtained by accurate mathematical model calculation. Moreover, the vibration source of scroll compressor is more, the signal of shell surface is non-stationary and non-linear, so the fault diagnosis of scroll compressor is more complicated. On the basis of conventional spectrum analysis, this paper uses multi-angle information fusion to distinguish the fault of non-stationary signal more accurately. Based on the idea of vibration signal analysis and the theory of entropy and grey correlation degree in information theory, a singular spectral entropy based on time domain and power spectral entropy in frequency domain is established in this paper. A new fault diagnosis method based on time-frequency domain wavelet energy spectrum entropy and wavelet spatial characteristic spectrum entropy is proposed and used as a quantitative characteristic index for comprehensive evaluation of the vibration state of scroll compressor. Several difficulties are analyzed in this paper. One is the parameter selection of the embedding delay theory of singular spectral entropy, which is directly related to the discrimination effect of singular decomposition on the effective information and noise of the signal. Secondly, the traditional probability entropy is improved when the sliding window is added, so that the power spectrum entropy and the wavelet spectrum entropy reflect the distribution difference and change of the local characteristics of the signal. The mathematical models of singular spectral entropy, power spectral entropy, wavelet energy spectrum entropy and wavelet characteristic spectral entropy are established by using several algorithms of information entropy in MATLAB signal processing toolbox. Combined with the entropy reference samples of the scroll compressor at different speeds and the samples to be diagnosed, the grey correlation analysis is carried out, and the quantitative results of the grey correlation degree are directly used to realize the good identification of several faults of the scroll compressor. The validity of this fault diagnosis method is proved.
【学位授予单位】:兰州理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH45;TN911.7;O236
【参考文献】
相关期刊论文 前10条
1 徐克红;程鹏飞;文汉江;;太阳黑子数时间序列的奇异谱分析和小波分析[J];测绘科学;2007年06期
2 刘涛;邵华;;基于LabVIEW的变频涡旋压缩机振动信号分析[J];电子测量技术;2009年07期
3 刘振全,任俊士;涡旋压缩机的振动时域和频域分析[J];甘肃工业大学学报;2000年01期
4 彭斌,刘振全,李海生;变频涡旋压缩机测试系统的研究[J];化工自动化及仪表;2005年03期
5 张赛飞;高跃飞;薛百文;;基于分形理论齿轮箱故障诊断研究[J];火炮发射与控制学报;2007年02期
6 耿俊豹;黄树红;陈非;刘伟;;基于信息熵贴近度的旋转机械故障诊断[J];华中科技大学学报(自然科学版);2006年11期
7 蒋培,胡晓棠;一种新的选择相空间重构参数的方法[J];机械科学与技术;2001年03期
8 耿俊豹;黄树红;金家善;陈非;申_";刘伟;;基于信息熵贴近度和证据理论的旋转机械故障诊断方法[J];机械科学与技术;2006年06期
9 申_",黄树红,韩守木,杨叔子;旋转机械振动信号的信息熵特征[J];机械工程学报;2001年06期
10 侯敬宏,黄树红,申_",张燕平;基于小波分析的旋转机械振动信号定量特征研究[J];机械工程学报;2004年01期
相关博士学位论文 前1条
1 谢平;故障诊断中信息熵特征提取及融合方法研究[D];燕山大学;2006年
相关硕士学位论文 前10条
1 杜文武;组合型线涡旋压缩机型线设计与涡旋齿的有限元分析[D];兰州理工大学;2011年
2 雷剑宇;鼓风机和压缩机性能测试系统设计与实践[D];西北工业大学;2005年
3 陈非;基于融合信息熵距的旋转机械振动故障定量诊断研究[D];华中科技大学;2005年
4 林洪彬;信息熵分析方法研究及其在故障诊断中的应用[D];燕山大学;2006年
5 刘锐;基于小波变换的电能质量扰动的研究[D];厦门大学;2006年
6 胡军辉;基于谱熵的故障特征提取与数据挖掘技术研究[D];西北工业大学;2007年
7 柳会敏;基于LabVIEW的变频涡旋压缩机性能测控系统的研究[D];兰州理工大学;2008年
8 陈宏;基于小波能熵和支持向量机的故障诊断方法及其应用研究[D];燕山大学;2010年
9 吴虎;基于MATLAB遗传算法工具箱的组合涡旋型线优化[D];兰州理工大学;2010年
10 邵华;基于LabVIEW的变频涡旋压缩机振动测试系统[D];兰州理工大学;2010年
本文编号:2451727
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2451727.html