基于机器视觉的悬链线上吊钩的识别研究
[Abstract]:Catenary production line is widely used in industrial production, such as painting, shot, drying, livestock slaughtering and so on. At present, the loading and unloading of workpieces on catenary lines is still done manually, relying on the physical strength of the workers to carry them up and unload them. The workers have great labor intensity and low production efficiency. In addition, painting and other operations will also have a serious impact on human health. So only by using automatic loading and unloading equipment on catenary line can the next parts meet the requirements of high-speed and high efficiency of product quality and production efficiency. In order to ensure the automatic loading and unloading of workpiece, it is necessary to find the hooks on the catenary and the position of the workpiece so that the workpiece can be placed on the hooks. In view of this characteristic, this paper introduces machine vision into the identification of hooks on catenary. Machine vision is used to determine the position of the hook, and the automatic loading and unloading equipment adjusts the movement track to place the workpiece accurately. The research contents of this paper include the following aspects: firstly, the design of hook image acquisition hardware system, including lighting system, camera, acquisition card and other hardware, is completed. The Bumblebee2 parallel binocular camera from Point Grey Company of Canada was used to collect the images of the hooks on the catenary line, and the calibration of the internal and external parameters of the binocular camera was completed by using Zhang Zhengyou plane calibration method. The error analysis of the obtained parameters is also given. Secondly, taking the hooks on the poultry slaughtering line as the research object, according to the characteristics of this kind of hooks, the median filtering algorithm is first used to de-noising the image. On the basis of comparing various feature matching methods, the matching points between two images are obtained by using the SIFT feature matching algorithm and the method of calculating projection transformation matrix, and the corresponding relation between the matching points is obtained. Finally, the spatial three-dimensional information of the hooks is obtained according to the triangle rule, which provides a reliable recognition image for automatic recognition of the hooks by the robot. Thirdly, taking the hooks on the catenary of the investment casting workshop as the research object, the recognition area of the hooks is narrowed to the target range by Hough transform after pre-processing the collected images. The target area is clearly identified by horizontal and vertical grayscale projection. By matching the two images, the spatial information of the target recognition area of the hook is obtained and compared with the actual size of the hook.
【学位授予单位】:济南大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH22
【参考文献】
相关期刊论文 前10条
1 胡亮;段发阶;丁克勤;叶声华;;钢板表面缺陷检测光学系统的设计[J];传感技术学报;2005年04期
2 周子啸;赵晓林;胡峰;张利;;基于仿真机器人的双目视觉定位[J];电视技术;2010年08期
3 孟颖;李长春;王士锋;;悬链线上自动装卸工件的研究[J];国防交通工程与技术;2010年04期
4 张舞杰;李迪;叶峰;;基于视觉的贴片元件检测算法[J];华南理工大学学报(自然科学版);2010年01期
5 王力;张茂青;王洪东;;基于机器视觉的贴片机元件定位的图像处理算法研究[J];电工电气;2009年01期
6 彭惠青,李海燕;机器人视觉定位的图像处理[J];计算技术与自动化;2004年01期
7 范秋凤;杨国胜;马晓燕;王应军;;基于对应点匹配的物体深度信息测量[J];计算机应用;2006年08期
8 唐新星;赵丁选;黄海东;倪涛;;基于图像叠合的工程机器人立体视觉系统[J];武汉理工大学学报(交通科学与工程版);2009年01期
9 戴君,赵海洋,冯心海;机器视觉[J];机械设计与制造工程;1998年04期
10 李云峰;贾晨辉;;基于灰度投影的快速纸币图像几何校正[J];计算机应用与软件;2009年06期
相关博士学位论文 前1条
1 伍济钢;薄片零件尺寸机器视觉检测系统关键技术研究[D];华中科技大学;2008年
相关硕士学位论文 前10条
1 刘华冠;基于机器视觉的袋装物料位姿自动识别研究[D];济南大学;2011年
2 王士锋;基于机器视觉的车轮图像处理与分析[D];济南大学;2011年
3 张春秀;基于双目视觉的三维重建[D];天津大学;2010年
4 庹宇翔;基于双目视觉的移动焊接机器人障碍物三维定位方法[D];上海交通大学;2011年
5 陈勇;基于机器视觉的表面缺陷检测系统的算法研究及软件设计[D];天津大学;2006年
6 赵玉芹;基于多幅标定图像的管件三维重建[D];南京航空航天大学;2008年
7 林琳;机器人双目视觉定位技术研究[D];西安电子科技大学;2009年
8 刘霞;工业零件形状尺寸的机器视觉检测系统的研究[D];哈尔滨理工大学;2009年
9 张天厚;基于机器视觉的编织袋图像处理与分析[D];济南大学;2010年
10 刘学山;基于机器视觉的锂离子电池极片检测系统的研究与设计[D];华南理工大学;2010年
本文编号:2457738
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2457738.html