基于遗传算法的桥式起重机结构进化设计
[Abstract]:With the development of biological evolution theory, evolutionary technology has become a general problem solving technology, which is more and more popular. By learning the process of evolution and solving the complex problems in life, the theory of biological evolution is perfectly applied to practice. Among all evolutionary algorithms, genetic algorithm is the fastest developing and the most popular one. The genetic algorithm uses the method of studying target population to extract genes, organize searching for multiple regions of solution space, carry on genetic operation and variation, analyze fitness, produce better offspring, inherit many times, and then produce ideal optimal solution. It has the characteristics of self-organization, self-learning, self-adaptation and so on. It is especially suitable for large-scale parallel computing. Moreover, it has high evolutionary efficiency, simple operation and strong generality. The finite element theory has been widely used in engineering practice, which not only improves the precision of structural analysis, saves the time of structural design, improves the efficiency of design, but also realizes programmed and parameterized design. The combination of evolutionary design theory and structural finite element analysis can be applied to the metal structure design of overhead crane, which has remarkable scientific research and economic value, and can better guide the engineering practice. Firstly, the paper deeply studies the literature about genetic algorithm and structural evolutionary design at home and abroad, summarizes the research history and development status of structural evolutionary design, the important role and engineering application of finite element theory in the design of large-scale metal structures. Then using the finite element analysis software ANSYS APDL language to carry on the parametric modeling to the overhead crane, and according to the crane design criterion to carry on the working condition analysis, on this basis, combined with the genetic algorithm to establish the mathematical model, The genetic evolution operation, fitness analysis and multi-generation evolution of genes with parameterized metal structure were carried out. Finally, the optimal solution was obtained, that is, the optimal structural size, which meets the requirements and uses the optimal material. Finally, the algorithm of the paper is encapsulated by VC 6.0.It forms a simple user interface and is easy to use in engineering. Based on the practical design of metal structure of overhead crane, combining the advantages of genetic algorithm and finite element analysis of structure, this paper not only realizes the fast calculation of metal structure under various working conditions, but also combines the advantages of genetic algorithm and finite element analysis of structure. Finally, the fast parallel optimization of structural design gene in multi-direction is completed, and finally the satisfactory optimal solution is obtained, which can guide the engineering practice better.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TP18;TH215
【参考文献】
相关期刊论文 前10条
1 赖忠喜;王伟麟;;VC++与MTALAB的混合编程的研究[J];福建电脑;2010年03期
2 刘志方,邢国雷;工程实用的遗传算法结构优化设计[J];工程建设与设计;2005年01期
3 王周益;刘继兴;柳长安;;VC++与MATLAB混合编程研究及开发实例[J];计算机应用研究;2006年05期
4 王翔;高亮;邱浩波;;进化设计及其相关技术研究[J];机械设计与制造;2006年04期
5 唐小兵,沈成武,陈定方;神经网络与遗传算法结合在结构优化设计中的应用[J];武汉交通科技大学学报;1999年05期
6 姜涛,朱灯林,王安麟,王石刚;整合规则下的结构拓扑自组织进化设计[J];机械科学与技术;2005年08期
7 曾志华;虞伟建;;ANSYS结构优化技术在机械设计中的应用[J];中国制造业信息化;2009年13期
8 李淑华,李树森;桥式起重机桥架结构的ANSYS有限元分析[J];林业机械与木工设备;2005年06期
9 马元驰,孙国正;神经网络与进化策略在结构优化设计中的结合[J];机械;2004年05期
10 陈仲超,陆金桂,朱伯兴;遗传算法和神经网络的结构优化策略[J];南京化工大学学报(自然科学版);1999年01期
相关博士学位论文 前2条
1 李洪杰;面向机构构型设计的进化设计原理和方法的研究[D];华中科技大学;2004年
2 王吉华;基于特征函数的产品造型进化设计研究[D];山东师范大学;2009年
相关硕士学位论文 前9条
1 陈飞婷;基于遗传算法的变幅机构的设计[D];武汉理工大学;2004年
2 姜封国;基于遗传算法的结构可靠性优化问题的初步讨论[D];哈尔滨工程大学;2005年
3 曾春;基于ANSYS的桥式起重机桥架结构有限元动态分析研究[D];武汉理工大学;2006年
4 李明星;基于遗传算法的门座起重机变幅系统优化设计[D];武汉理工大学;2006年
5 吴瑞;基于遗传算法的模糊神经网络控制器的优化以及MATLAB与VC数据交换的研究[D];西安理工大学;2007年
6 姚锁宁;基于MATLAB/VC的教学评估系统研究与开发[D];西安理工大学;2008年
7 王凯;一种汽车造型特征设计的进化方法[D];湖南大学;2009年
8 岳亮亮;基于MATLAB和VC++混合编程的汽车动力与传动系统匹配研究[D];武汉理工大学;2010年
9 吴虎;基于MATLAB遗传算法工具箱的组合涡旋型线优化[D];兰州理工大学;2010年
,本文编号:2466235
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2466235.html