基于主元分析的空气压缩机故障诊断研究
[Abstract]:The purpose of this paper is to find an efficient and feasible fault diagnosis method for air compressor. Based on the working principle, mechanical structure, fault type and fault mechanism of the air compressor, the main fault characteristics of the air compressor are summarized, and the realization requirements of the fault diagnosis system for the air compressor are summarized. In order to find a suitable fault diagnosis algorithm, this paper focuses on how to solve the problem of high correlation between the air compressor fault detection variables and the detection variables. In order to solve this problem, the principal component analysis (Principal Components Analysis, PCA) technique is used as the preprocessing algorithm of the detection data in this paper. By analyzing the distribution of data samples in the high-dimensional space, the algorithm can find out the main changing directions and trends of the data in the high-dimensional space, and then extract the feature vectors which contain most of the information of the original data to replace the high-dimensional ones. Highly correlated raw data. On the basis of the PCA technology as the data preprocessing algorithm, this paper proposes the combination of the radial basis function (Radical Basis Function, and the PCA technology. RBF) neural network based air compressor fault diagnosis method and air compressor fault diagnosis method based on PCA technology combined with DES evidence theory. The fault diagnosis method of air compressor based on PCA technology and RBF neural network is to process the large and highly correlated original data set by establishing the principal component model of the running state of air compressor. The method of feature extraction is used to simplify the original data, and the simplified sample data is used to train the RBF neural network. Finally, the trained RBF recognition network is used to realize the fault classification of the air compressor. This method can make full use of the advantages of PCA technology in data dimensionality reduction and correlation, and greatly simplify the complex detection data. At the same time, the dimensionality reduction of PCA reduces a lot of operation process for the training and recognition of RBF network, which can improve the speed of training and recognition of neural network, and reduce the dimension of data processed by neural network at the same time. The RBF network not only avoids the possibility of collapse due to the high dimension of processing data, but also improves the resolution of neural network in the process of training. The fault diagnosis method of air compressor based on PCA technology and D S evidence theory is a fault diagnosis method based on the idea of information fusion. The method is observed from the angle of different operating state of air compressor (that is, different evidence), and the fault diagnosis method is based on the idea of information fusion. By analyzing the characteristic information of the test data under each evidence, the running state of the compressor is judged. Finally, the discriminant results under each evidence are fused into a comprehensive result by the combination rule of DES. Thus, the final discrimination of the running state of the air compressor can be realized. This method can analyze the information of the detected data more comprehensively, has the characteristics of fast processing speed and strong anti-jamming ability, and can realize high-precision fault separation and discrimination.
【学位授予单位】:长春工业大学
【学位级别】:硕士
【学位授予年份】:2012
【分类号】:TH165.3;TH45
【参考文献】
相关期刊论文 前10条
1 王国锋,王子良,秦旭达,王太勇;基于小波包和径向基神经网络轴承故障诊断[J];北京科技大学学报;2004年02期
2 倪国强,梁好臣;基于Dempster-Shafer证据理论的数据融合技术研究[J];北京理工大学学报;2001年05期
3 易正俊,黄瀚敏,黄席樾;基于Dempster-shafer理论的多个神经网络分类器融合算法[J];重庆大学学报(自然科学版);2002年07期
4 廖东兴;百龙滩水电厂计算机监控系统安装与调试[J];广西电力技术;1997年01期
5 涂嘉文,徐守时;贝斯方法与Dempster-Shafer证据理论的讨论[J];红外与激光工程;2001年02期
6 田永青,杨斌,朱仲英;基于RBF神经网络建立税务预测模型的研究[J];计算机工程;2002年05期
7 陆爽,侯跃谦,田野;基于AR模型和径向基神经网络的滚动轴承故障诊断[J];机械传动;2004年05期
8 杨帆;张玉杰;张彩丽;;基于PCA和RBF网络的故障诊断技术及其应用研究[J];计算机测量与控制;2008年07期
9 许军,罗飞路,张耀辉;多传感器信息融合技术在无损检测中的应用研究[J];无损检测;2000年08期
10 陈伟志,魏振军,王春迎;多元统计分析在数据挖掘中的作用[J];信息工程大学学报;2003年04期
相关博士学位论文 前3条
1 蒋其友;人工智能理论与技术的研究及其在大型离心式压缩机故障诊断中的应用[D];北京化工大学;1993年
2 牛群峰;压缩机智能状态监测理论与应用研究[D];南京理工大学;2007年
3 张冀;基于多源信息融合的传感器故障诊断方法研究[D];华北电力大学(河北);2008年
相关硕士学位论文 前7条
1 封波;多变量统计过程控制的应用研究[D];浙江大学;2002年
2 彭备战;信息融合技术在设备故障诊断中的应用研究[D];广东工业大学;2002年
3 葛泉波;多传感器数据融合及其在过程监控中的应用[D];河南大学;2005年
4 闫宏莉;证据理论在机械设备故障诊断中的应用研究[D];华北电力大学(北京);2006年
5 库德强;基于工控机和PLC的监控系统的研究[D];沈阳工业大学;2006年
6 吴秋明;基于RBF神经网络的故障诊断[D];江苏大学;2006年
7 王浩;空气压缩机集中监控系统的设计与实现[D];山东科技大学;2007年
,本文编号:2469373
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2469373.html