基于约束拓扑变换的大规模复杂多刚体系统振动分析
发布时间:2020-05-11 12:19
【摘要】: 随着现代机械系统动态性能要求的日益提高,机械系统的结构复杂程度急剧增加,动力学分析和优化逐渐成为结构设计中至关重要的一环。为满足一定的精度要求,通常采用大规模复杂多刚体动力学模型来描述这些复杂机械系统。传统动力学分析方法解决这一类大规模复杂多刚体动力学模型的计算问题时面临精度和效率两方面的严峻挑战,这是现阶段机械系统结构设计中迫切需要解决的关键难题之一。特别地,振动计算作为此类系统动力学分析的核心和基础,其计算效率成为设计、优化和控制的瓶颈之一。本论文结合国家重大科研项目和重大工程的实际需求,从空间多刚体系统约束拓扑关系的角度入手,研究这一类系统振动方程的建立和求解问题,旨在针对大规模复杂多刚体系统建立一种精确和高效的振动求解新方法。 采用矩阵和向量描述多刚体系统中的物理参数,包括刚体的质量和惯性张量、刚体间弹簧—阻尼连接的系数、约束的数学表达,以及刚体的空间振动状态,由此以简化符号表示,并有助于形成关于系统的更深刻认识。基于导出的刚体空间振动位移传递和坐标系间变换的统一公式,提出了采用矩阵变换分三步建立一般多刚体系统振动微分方程的新方法。首先,不考虑任何约束,采用拉格朗日方法建立以绝对坐标描述的二阶线性常微分方程组;然后,忽略闭环约束链中的切断铰,构造开环约束矩阵,对无约束系统矩阵做线性变换得到开环约束系统二阶线性常微分方程组;最后,构造切断铰约束矩阵,对开环约束系统矩阵做线性变换得到闭环约束系统二阶线性常微分方程组。由于此方法无须矩阵求导和方程线性化,与传统方法相比可显著提高计算效率。 采用复模态分析求取特征值和特征向量,进而得到系统的模态参数。基于振动位移变换关系导出了任意两点之间不同坐标系下的一般传递函数公式,该公式包含了物理坐标与独立广义坐标之间的显式变换关系,因此较传统基于独立广义坐标的传递函数计算公式更为实用。在传统模态频率关于矩阵元素的灵敏度的基础上,导出了模态频率关于设计参数的灵敏度计算公式,使参数灵敏度分析和优化得以简捷、高效地实现。提出了一种递归算法求解多刚体系统在装配位置的无变形平衡问题,解决了多刚体系统动力学仿真中的初始状态模拟难题。 基于上述算法开发了多体动力学软件Simulith,提供了振动模态分析、传递函数分析、频域响应分析、灵敏度分析、动力学优化以及控制等功能。针对不同约束拓扑的多刚体系统进行数值实验,验证了本算法的正确性和效率。中国软件评测中心性能测试结果表明,该求解器较传统方法(如ADAMS)可以显著提高计算速度。而且,模型中刚体个数、刚体间作用力元个数或约束个数越多,该求解器的计算效率提高越明显。本文提出的方法已成功应用于100nm光刻机动力学分析与优化,有效缩短了光刻机设计周期,降低了研发成本,实验结果进一步验证了本文所述方法的正确性和有效性。本文提出的方法还可用于各种类型的结构和机构系统振动分析,以及参数灵敏度分析与优化。 本文研究工作是2007年度教育部自然科学奖一等奖“精密运动机构中若干关键动力学与控制问题研究”的主要成果之一。
【图文】:
华中科技大学博士学位论文方案,为光刻机结构优化设计提供了重要依据。七章在总结本文研究内容和研究成果的基础上,初步探讨了本课题的后续研方法。文各章节之间的关系如下图所示:
并通过最多一个关节限制1一6个相对运动自由度气空间弹簧一阻尼连接和关节的位置和方向(即姿态)可以任意。图2.2.3为如上所述的、包含三个移动刚体的多刚体系统示意图。图2.2.3多刚体系统示意图l)系统参考坐标系定义如图2.2.4所示,本文用到五种参考坐标系来描述多刚体系统,详述如下。(l)全局惯性参考坐标系 (GIObalinertiarefereneeframe,,GIRF)定义全局惯性参考坐标系Z口-习陀(以下简记为艺。)固定于地基B。上且始终不变。.两个刚体之间存在多个关节的情况一般不常见,但也是可以的,从理论上讲可以按它们的作用效果合并为一个关节。l8
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2008
【分类号】:TH113.1
本文编号:2658443
【图文】:
华中科技大学博士学位论文方案,为光刻机结构优化设计提供了重要依据。七章在总结本文研究内容和研究成果的基础上,初步探讨了本课题的后续研方法。文各章节之间的关系如下图所示:
并通过最多一个关节限制1一6个相对运动自由度气空间弹簧一阻尼连接和关节的位置和方向(即姿态)可以任意。图2.2.3为如上所述的、包含三个移动刚体的多刚体系统示意图。图2.2.3多刚体系统示意图l)系统参考坐标系定义如图2.2.4所示,本文用到五种参考坐标系来描述多刚体系统,详述如下。(l)全局惯性参考坐标系 (GIObalinertiarefereneeframe,,GIRF)定义全局惯性参考坐标系Z口-习陀(以下简记为艺。)固定于地基B。上且始终不变。.两个刚体之间存在多个关节的情况一般不常见,但也是可以的,从理论上讲可以按它们的作用效果合并为一个关节。l8
【学位授予单位】:华中科技大学
【学位级别】:博士
【学位授予年份】:2008
【分类号】:TH113.1
【引证文献】
相关期刊论文 前1条
1 吴志会;张鸣;姜伟;金建新;;气浮支承精密运动平台的俯仰振动分析[J];机械与电子;2012年02期
本文编号:2658443
本文链接:https://www.wllwen.com/kejilunwen/jixiegongcheng/2658443.html