52转基因水稻研究的回顾与展望
本文关键词:转基因水稻研究的回顾与展望,,由笔耕文化传播整理发布。
2009年9月第54卷第18期;88;89;90;91;92;93;94;95;96;97;98;99;100;101;102;103;104;105;106;107;108;109;110;111;112;113;114;1152003,30:330—334杨祁云,许新;2714;评述;116LianHL,YuX,YeQ,etal.T;117SaijoY,
2009年9月 第54卷 第18期
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115 2003, 30: 330—334 杨祁云, 许新萍, 朱小源, 等. 转基因水稻对稻瘟病的抗性研究. 植物病理学报, 2003, 33: 162—166 Maruthasalam S, Kalpana K, Kumar K K, et al. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep, 2007 26: 791—804 Kim J K, Jang I C, Wu R, et al. Co-expression of a modified maize ribosome inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res, 2003, 12: 475—484 Schaffrath U, Mauch F, Freydl E, et al. Constitutive expression of the defense-related Rir1b gene in transgenic rice plants confers en-hanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol, 2000, 43: 59—66 Krishnamurthy K, Balconi C, Sherwood J E, et al. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant-Microbe Interact, 2001, 14: 1255—1260 Kanzaki H, Nirasawa S, Saitoh H, et al. Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theor Appl Genet, 2002, 105: 809—814 Coca M, Bortolotti C, Rufat M, et al. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Mol Biol, 2004, 54: 245—259 Shao M, Wang J, Dean R A, et al. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Mag-naporthe grisea. Plant Biotechnol J, 2008, 6: 73—81 Qiu D, Xiao J, Ding X, Xiong M, et al. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Mol Plant Microbe Interact, 2007, 20: 492—499 Xiao W, Liu H, Li Y, et al. A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS ONE, 2009, 4: e4603 Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165—S183 Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Bio-tech, 2005, 16: 123—132 Gao J, Chao D, Lin H. Toward understanding molecular mechanisms of abiotic stress responses in rice. Rice, 2008, 1: 36—51 Zhu B, Su J, Chang M, et al. Overexpression of a ?1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci, 1998, 139: 41—48 Su J, Wu R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with con-stitutive synthesis. Plant Sci, 2004, 166: 941—948 Garg A K, Kim J K, Owens T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA, 2002, 99: 15898—15903 Jang I C, Oh S J, Seo J S, et al. Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol, 2003, 131: 516-524 Sawahel W. Improved performance of transgenic glycinebetaine-accumulating rice plants under drought stress. Biol Plantarum, 2003, 47: 39—44 Noury M, Bassie L, Lepri O, et al. A transgenic rice cell lineage expressing the oat arginine decarboxylase (adc) cDNA constitutively accumulates putrescine in callus and seeds but not in vegetative tissues. Plant Mol Biol, 2000, 43: 537—544 Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci USA, 2004, 101: 9909—9914 Xu D, Duan X, Wang B, et al. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol, 1996, 110: 249—257 Rohila J S, Jain R K, Wu R. Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci, 2002, 163: 525—532 Babu R C, Zhang J X, Blum A, et al. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci, 2004, 166: 855—862 Cheng Z Q, Targolli J, Huang X Q, et al. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breeding, 2002, 10: 71—82 Xiao B, Huang Y, Tang N, et al. Overexpression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet, 2007, 115: 36—45 Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008, 27: 329—334 Wang F Z, Wang Q B, Kwon S Y, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol, 2005, 162: 465—472 Prashanth S R, Sadhasivam V, Parida A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res, 2008, 17: 281—291
2714
评 述
116 Lian H L, Yu X, Ye Q, et al. The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol, 2004, 45: 481—489
117 Saijo Y, Hata S, Kyozuka J, et al. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought toler-
ance on rice plants. Plant J, 2000, 23: 319—327
118 Xiong L Z, Yang Y N. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible
mitogen-activated protein kinase. Plant Cell, 2003, 15: 745—759
119 Xiang Y, Huang Y, Xiong L. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol,
2007, 144: 1416—1428
120 Oh S J, Song S I, Kim Y S, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress with-
out stunting growth. Plant Physiol, 2005, 138: 341—351
121 Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive
gene expression in transgenic rice. Plant Cell Physiol, 2006, 47: 141—153
122 Wang Q Y, Guan Y C, Wu Y R, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature toler-
ance in both Arabidopsis and rice. Plant Mol Biol, 2008, 67: 589—602
123 Xu D Q, Huang J, Guo S Q, et al. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tol-
erance in rice (Oryza sativa L.). Febs Lett, 2008, 582: 1037—1043
124 Chen J Q, Meng X P, Zhang Y et al. Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnol Lett,
2008, 30: 2191—2198
125 Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11
under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21—30
126 Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23 as a key player of bZIP transcription factor family for conferring ABA
sensitivity and salinity and drought tolerance in rice. Plant Physiol, 2008, 148: 1938—1952
127 Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt
tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987—12992
128 Hou X, Xie K, Yao J, et al. Homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance.
Proc Natl Acad Sci USA, 2009, 106: 6410—6415
129 Kanneganti V, Gupta A K. Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tol-
erance to salt, drought and cold stress in transgenic tobacco and rice. Plant Mol Biol, 2008, 66: 445—462
130 Huang Y, Xiao B, Xiong L. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought
resistance in rice. Planta, 2007, 226: 73—85
131 Huang J, Wang M M, Jiang Y, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that
contributes to temperature stress tolerance. Gene, 2008, 420: 135—144
132 Yang Z, Wu Y, Li Y, et al. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice.
Plant Mol Biol, 2009, 70: 219—229
133 Liu K, Wang L, Xu Y, et al. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling,
salt and drought, and enhanced proline level in rice. Planta, 2007, 226: 1007—1016
134 Xiao B, Chen X, Xiang C, et al. Evaluation of seven function-known candidate genes for their effects on improving drought resis-
tance of transgenic rice under the field conditions. Mol Plant, 2009, 2: 73—83
135 Hirel B, Gouis J L, Ney B et al. The challenge of improving nitrogen use efficiency in crop plants: Towards a more central role for
genetic variability and quantitative genetics within integrated approaches. J Exp Bot, 2007, 58: 2369—2387
136 Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable
resource. New Phytol, 2003, 157: 423—447
137 Tabuchi M, Abiko T, Yamaya T. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). J Exp Bot,
2007, 58: 2319—2327
138 Lam H M, Coschigano K T, Oliveira I C, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants.
Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 569—593
139 Ishiyama K, Inoue E, Tabuchi M, et al. Biochemical background and compartmentalized functions of cytosolic glutamine synthetase
for active ammonium assimilation in rice roots. Plant Cell Physiol, 2004, 45: 1640—1647
140 Yamaya T, Obara M, Nakajima H, et al. Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp
Bot, 2002, 53: 917—925
141 Cai H M, Zhou Y, Xiao J H, et al. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress re-
sponses in rice. Plant Cell Reports, 2009, 28: 527—537
142 Kumar A, Kaiser B N, Siddiqi M Y, et al. Functional characterisation of OsAMT1.1 overexpression lines of rice, Oryza sativa. Funct
Plant Biol, 2006, 33: 339—346
143 Hoque M, Masle J, Udvardi M, et al. Over-expression of the rice OsAMT1; 1 gene increases ammonium uptake and content, but im-pairs growth and development of plants under high ammonium nutrition. Funct Plant Biol, 2006, 33: 153—63
2715
2009年9月 第54卷 第18期
144 Shrawat A K, Carroll R T, DePauw M, et al. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific
expression of alanine aminotransferase. Plant Biotechnol J, 2008, 6: 722—732
145 Zhou Y, Cai H, Xiao J, et al. Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and
increased amino acid content in seeds. Theor Appl Genet, 2009, 118: 1381—1390
146 Raghothama K G. Phosphate transport and signaling. Curr Opin Plant Biol, 2000, 3: 182—187
147 Yi K, Wu Z, Zhou J, et al. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol,
2005, 138: 2087—2096
148 Smith F W. The phosphate uptake mechanism. Plant Sci, 2002, 245: 105—114
149 Seo H, Jung Y, Song S, et al. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in
rice. Biotechnol Lett, 2008, 30: 1833—1838
150 Juliano B O. Rice Chemistry and Technology. 2nd. American Association of Cereal Chemists, Incorporated Saint Paul, Minnesota,
USA, 1985
151 Fan C, Xing Y, Mao H, et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,
encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164—1171
152 Song X J, Huang W, Shi M, et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin
ligase. Nat Genet, 2007, 39: 623—630
153 高振宇, 曾大力, 崔霞, 等. 水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析. 中国科学C辑: 生命科学, 2003, 33:
481—487
154 Wang Z Y, Wu Z L, Xing Y Y, et al. Nucleotide sequence of rice Waxy gene. Nucleic Acids Res, 1990, 18: 5898
155 周丽慧, 刘巧泉, 张昌泉, 等. 水稻种子蛋白质含量及组分在品种间的变异与分布. 作物学报, 2009, 35: 884—891
156 Gao Y F, Jing Y X, Shen S H, et al. Transfer of lysine-rich protein gene into rice and production of fertile transgenic plants. Acta Bot
Sin, 2001, 43: 506-511
157 唐俐, 刘巧泉, 邓晓湘, 等. 无抗性选择标记的转高赖氨酸蛋白(LRP)基因籼稻恢复系的获得. 作物学报, 2006, 32: 1248—
1251
158 王为民, 赵倩, 余静娟, 等.水稻转高赖氨酸蛋白质基因(sb401)植株的获得及种子中蛋白质和氨基酸的含量分析. 作物学报,
2005, 31: 603—607
159 李科, 王世全, 吴发强, 等. 农杆菌介导的转高赖氨酸蛋白基因(sb401)水稻T4代分析. 中国水稻科学, 2008, 22: 131—136 160 Paine J A, Shipton C A, Chaggar S, et al. A new version of Golden Rice with increased pro-Vitamin A content. Nat Biotechnol, 2005,
23: 482—487
161 Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol, 1999, 17: 282—
286
162 Lucca P, Hurrell R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains.
Theor Appl Genet, 2001, 102: 392—397
163 Vasconcelos M, Datta K, Oliva N, et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci, 2003,
164: 371—378
164 刘巧泉, 姚泉洪, 王红梅, 等. 转基因水稻胚乳中表达铁结合蛋白提高稻米铁含量. 遗传学报, 2004, 31: 518—524
165 Qu L Q, Yoshihara T, Ooyama A, et al. Iron accumulation does not parallel the high expression level of ferritin in transgenic rice
seeds. Planta, 2005, 222: 225—233
166 Ku M S B, Agarie S, Nomura M, et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat
Biotechnol, 1999, 17: 76—80
167 Jiao D, Huang X, Li X, et al. Hotosynthetic characteristics and tolerance to photo-oxidation of transgenic rice expressing C4 photo-
synthesis enzymes. Photosynth Res, 2002, 72: 85—93
168 Fukayama H, Hatch M D, Tamai T, et al. Activity regulation and physiological impacts of the maize C4-specific phosphoenolpyruvate
carboxylase overproduced in transgenic rice plants. Photosynth Res, 2003, 77: 227—239
169 Suzuki S, Murai N, Kasaoka K, et al. Carbon metabolism in transgenic rice plants that express phosphoenolpyruvate carboxylase
and/or phosphoenolpyruvate carboxykinase. Plant Sci, 2006, 170: 1010—1019
170 Bandyopadhyay A, Datta K, Zhang J, et al. Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene
cloned from maize. Plant Sci, 2007, 172: 1204—1209
171 Taniguchi Y, Ohkawa H, Masumoto C, et al. Overproduction of C4 photosynthetic enzymes in transgenic rice plants: an approach to
introduce the C4-like photosynthetic pathway into rice. J Exp Bot, 2008, 59: 1799-1809
172 Fukayama H, Tsuchida H, Agarie S, et al. Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant,
rice. Plant Physiol, 2001, 127: 1136—1146
173 Suzuki S, Murai N, Burnell J N, et al. Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phos-
phoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol, 2000, 124: 163—172
174 Takeuchi Y, Akagi H, Kamasawa N, et al. Aberrant chloroplasts in transgenic rice plants expressing a high level of maize
2716
评 述
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194 NADP-dependent malic enzyme. Planta, 2000, 211: 265—274 Tsuchida H, Tamai T, Fukayama H, et al. High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth of a C3 plant, rice. Plant Cell Physiol, 2001, 42: 138—145 Datta S K, Datta K, Soltanifar N, et al. Herbicide resistant indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol Biol, 1992, 20: 619—629 Oard J H, Linscombe S D, Braverman M P, et al. Development, field evaluation and agronomic performance of transgenic herbicide resistant rice. Mol Breed, 1996, 2: 359—368 朱冰, 黄大年, 杨炜, 等. 利用基因枪法获得可遗传的抗除草剂转基因水稻植株. 中国农业科学杂志, 1996, 29: 15—-20 吴发强, 王世全, 李双成, 等. 抗除草剂转基因水稻的研究进展及其安全性问题. 分子植物育种, 2006, 4: 846—852 胡利华, 吴慧敏, 周泽民, 等. 利用农杆菌介导法将柠檬酸合成酶基因(CS)导入籼稻品种明恢86. 分子植物育种, 2006, 4: 160—166 苏军, 陈建民, 田大刚, 等. Error-prone PCR获得EPSP酶突变基因提高水稻的草甘膦抗性. 分子植物育种, 2008, 6: 830—836 Ohkawa H, Tsujii H, Ohkawa Y. The use of cytochrome P450 genes to introduce herbicide tolerance in crops: a review. Pesticide Sci, 1999, 55: 867—874 Inui H, Shiota N, Ido Y, et al. Herbicide metabolism and tolerance in the transgenic rice plants expressing human CYP2C9 and CYP2C19. Pestic Biochem Physiol, 2001, 71: 156—169 Kawahigashi H, Hirose S, Hayashi E, et al. Enhanced herbicide cross-tolerance in transgenic rice plants co-expressing human CYP1A1, CYP2B6, and CYP2C19. Plant Sci, 2005, 168: 773—781 Kawahigashi H, Hirose S, Ozawa K, et al. Analysis of substrate specificity of pig CYP2B22 and CYP2C49 towards herbicides by transgenic rice plants. Transgenic Res, 2005, 14: 907—917 Kawahigashi H, Hirose S, Ohkawa H, et al. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19. J Agric Food Chem, 2006, 54: 2985—2991 Kawahigashi H, Hirose S, Ohkawa H, et al. Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv, 2007, 25: 75—84 Hirose S, Kawahigashi H, Ozawa K, et al. Transgenic rice containing human CYP2B6 detoxifies various classes of herbicides. J Agric Food Chem, 2005, 53: 3461—3467 Inui H, Ohkawa H. Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manag Sci, 2005, 61: 286—291 Kawahigashi H, Hirose S, Ohkawa H, et al. Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6. J Agric Food Chem, 2005, 53: 9155—9160 Lee H J, Lee S B, Chung J S, et al. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen. Plant Cell Physiol, 2000, 41: 743—749 Jung S, Back K. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol Biochem, 2005, 43: 423—430 Jung S, Lee Y, Yang K, et al. Dual targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplasts and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ, 2004, 27:1436—1446 Endo M, Osakabe K, Ono K, et al. Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J, 2007, 52: 157—166
2717
下载地址:52转基因水稻研究的回顾与展望_图文.Doc
【】最新搜索
转基因水稻研究的回顾与展望_图文
离退休人员退休金领取异地建模申请表
当交易没有跨准则,也没有跨报表,那么个别报表( ),跟合
聚丙烯酰胺种类及性质
云教云登录平台
新三字经--人之初、本天真
屈姓起源及简介
linux虚拟机网络连接模式 bridged, host-o
大学生应该看的100本书
资产
本文关键词:转基因水稻研究的回顾与展望,由笔耕文化传播整理发布。
本文编号:69459
本文链接:https://www.wllwen.com/kejilunwen/jiyingongcheng/69459.html