当前位置:主页 > 科技论文 > 矿业工程论文 >

煤层液压钻自动纠偏装置的研究

发布时间:2018-01-31 21:07

  本文关键词: 液压钻 扶正器 纠偏装置 纠偏原理 纠偏控制 出处:《安徽理工大学》2017年硕士论文 论文类型:学位论文


【摘要】:煤层液压钻自动纠偏装置作为现代化的机械装置,基于纠偏原理,结合了石油、天然气行业中垂直井纠偏装置的特点,利用液压装置提供纠偏力,并且在圆周上四个方向分别布置一个微型液压缸,保证纠偏后钻杆柱的对中性,并且采用蓝牙传输数据的方式进行纠偏控制,能够快速、高效地实现纠偏作业,这极大地方便了煤炭井下工作人员的操作。本文针对不同直径井眼,制定了不同的纠偏方案。对于小井眼直径可采用扶正器组合的方法控制井眼轨迹;对于较大井眼可设置纠偏装置对其进行轨迹纠偏。对于纠偏装置,根据材料力学中的挠度计算方法建立方程,通过计算该方程的解来确定纠偏装置的合理安置点,并算出纠偏力的大小。然后根据纠偏力的大小进行纠偏装置中液压装置的设计。但整个纠偏装置能否很好适应井下工作还需进行仿真分析。本文利用ANSYS进行装置的仿真研究,建立模型后利用Fluent和Static Structural进行耦合。首先针对不同的流体材料进行仿真分析,在结果中,查看其三维状态下的压力、速度、流线的分布情况和二维状态下其压力、速度、流线的分布情况。对于上返泥浆液的仿真则做了多组对比。结果发现,不论下入的钻井液还是上返的泥浆液,其都在纠偏装置所在位置发生速度变化,速度数值上有显著提高。本文根据流体仿真的结果,转换数据到静力场中进行耦合分析,将流体仿真中产生的压力数据加载至钻杆柱和纠偏装置上,观察其结果,钻杆内部的钻井液压力对钻杆柱和纠偏装置的影响并不大,属于其材料可承受范围之内,相同的,泥浆液对纠偏装置也是有作用力的,但是这个作用力产生的形变和应力是比较小的,对其不会有太大影响。但是,泥浆液对钻杆的影响是非常明显的,形变影响较小,但应力过大,因此要改选相同公称直径、壁厚较厚的钻杆。这说明本文中纠偏装置的设计符合井下作业要求,可以面对井下泥浆液和钻井液的冲击。
[Abstract]:As a modern mechanical device, the automatic deviation correction device of coal seam hydraulic drill is based on the principle of deviation correction, combined with the characteristics of rectifying device in vertical well in petroleum and natural gas industry, and the hydraulic device is used to provide correction force. At the same time, a micro hydraulic cylinder is arranged in the four directions of the circle to ensure the neutral of the drill string after correcting the deviation, and to use Bluetooth to transmit the data to correct the deviation, which can quickly and efficiently realize the rectifying operation. This greatly facilitates the operation of coal downhole workers. In this paper, different deviation correction schemes are made for different boreholes with different diameters. For small borehole diameters, the method of centralizer combination can be used to control the wellbore trajectory; For the larger borehole, a correction device can be set up to correct the trajectory. For the rectifying device, the equation is established according to the deflection calculation method in the mechanics of materials. By calculating the solution of the equation, the reasonable placement point of the rectifying device is determined. Then, according to the magnitude of rectifying force, the hydraulic device in the rectifying device is designed. However, whether the whole rectifying device can adapt well to the downhole work still needs to be simulated and analyzed. In this paper, ANSYS is used in this paper. Carry on the simulation research of the device. The model is coupled by Fluent and Static Structural. Firstly, different fluid materials are simulated and analyzed. The distribution of pressure, velocity, streamline and the distribution of pressure, velocity and streamline in two-dimensional state are analyzed. The simulation of the upper and back slurry is compared in many groups. No matter the drilling fluid entered or the mud fluid returned up, the velocity of the drilling fluid changed in the position of the rectifying device, and the value of the velocity increased significantly. According to the results of fluid simulation, this paper shows that the velocity of the drilling fluid is better than that of the drilling fluid. The pressure data generated in the fluid simulation is loaded into the drill string and the rectifying device for the analysis of coupling data into the static field, and the results are observed. The drilling fluid pressure inside the drill pipe does not have a great effect on the drill string and the deviation correction device, which belongs to its material tolerance range. Similarly, the mud fluid also has an effect on the rectifying device. But the deformation and stress produced by this force is relatively small and will not have much effect on it. However, the effect of mud on the drill pipe is very obvious, the effect of deformation is small, but the stress is too large. Therefore, the drill pipe with the same nominal diameter and thick wall thickness should be changed, which shows that the design of the deviation correction device in this paper accords with the requirements of downhole operation and can face the impact of downhole mud and drilling fluid.
【学位授予单位】:安徽理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD421

【参考文献】

相关期刊论文 前10条

1 王敏生;光新军;;定向钻井技术新进展及发展趋势[J];石油机械;2015年07期

2 贺德军;粟俊;何建文;;磁定位测量技术在定向对接钻井施工的应用探析[J];中国井矿盐;2015年01期

3 谢志勇;冯伟;;煤矿井下定向钻孔施工工艺及技术研究[J];科技与企业;2014年14期

4 余理清;顾强;;精准定位技术在乐山矿区的应用[J];中国井矿盐;2013年06期

5 王子龙;;旋转导向钻井技术方法研究[J];中国石油和化工标准与质量;2013年12期

6 姜伟;蒋世全;付鑫生;陈平;;旋转导向钻井技术应用研究及其进展[J];天然气工业;2013年04期

7 卢毅;王国荣;严永发;蔚海文;蒋光强;王裕海;;钻杆开孔后剩余强度研究[J];石油机械;2013年03期

8 徐凤玲;;一种随钻测井仪器的研制及应用[J];中国西部科技;2010年25期

9 张春华;刘广华;;随钻测量系统技术发展现状及建议[J];钻采工艺;2010年01期

10 杨刚;伊明;王新;杨万和;;气体钻井井斜机理分析[J];新疆石油天然气;2009年04期



本文编号:1480005

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1480005.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a2473***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com