当前位置:主页 > 科技论文 > 矿业工程论文 >

掘进机动力学分析及电控箱减振研究

发布时间:2018-03-24 19:12

  本文选题:掘进机 切入点:电控箱 出处:《太原理工大学》2017年硕士论文


【摘要】:近年来我国经济发展迅猛,工业上对能源的需求与日俱增,煤是一种非常重要的能源。因此,对掘进机的研制、尤其是重型采掘机械的研制,成为当务之急。掘进机主要在矿井或地下等环境中工作,并且工作时掘进机截割头一直承受变化的工作载荷,非常容易造成各部件的振动,进而可能影响整机正常的采掘工作。掘进机电控箱位于后支撑部位,很容易产生振动,振动严重时甚至会导致内部元器件失灵。因此必须对其进行动态性能研究,通过动力学分析以控制机械振动,满足其工作稳定性的要求。本文针对某型掘进机进行了整机动力学仿真,并进行电控箱的减振设计。首先,利用UG建立了掘进机整机的简化模型,并对其进行整机的模态分析,获得整机的应力、变形及结构的模态特征,为后续分析各部件的振动以及各部件对电控箱振动情况的影响提供分析依据。截割头顶部、运输机构尾部、各液压缸最易发生变形。电控箱的变形主要发生在50 Hz-65Hz以及90Hz、116Hz左右的范围内,对电控箱进行减振隔振设计要尤其注意这几个频率段的减振效果。然后,在UG中构建出掘进机截割头的模型,并将其简化,在ANSYS/LS-DYNA软件中进行了横扫工况下截割臂在不同的俯仰角度下截割岩石的显式动力学仿真分析,获取了截割头在不同俯仰角工作时的受力和加速度情况,并据此进行了截割头工作过程中的振动分析,为掘进机整机的振动分析及部件减振隔振设计分析做好准备。将截割岩石过程中截割头所受的力和扭矩施加在整机模型的截割头上,进行了掘进机整机的瞬态动力学分析,进而对各个部件的动力响应结果进行查看,并分析其对电控箱的振动响应的影响。之后构建了现有的电控箱减振系统模型,并对其进行了谐响应分析,发现无论在哪个频率段,电控箱竖直方向的振动都最严重。通过对频域曲线进行分析发现在71Hz时电控箱与输入载荷达到共振状态。在此基础上提出二级减振设计。通过对参数化结构进行谐响应仿真,找到了减振效果最佳时第二级减振垫的位置。通过对现有减振设计和优化后的二级减振设计中电控箱的振动响应进行对比,验证了二级减振设计的效果要明显好于现有的减振设计。
[Abstract]:In recent years, the economy of our country develops rapidly, the demand for energy in industry is increasing day by day, coal is a kind of very important energy. Therefore, the development of roadheader, especially the development of heavy mining machinery, The roadheader mainly works in the mine or underground environment, and the cutting head of the excavator always bears the changing working load, which is very easy to cause the vibration of the various parts. The electric control box of the roadheader is located in the rear support, which is easy to produce vibration and even lead to the failure of internal components when the vibration is serious. Therefore, it is necessary to study its dynamic performance. The dynamic analysis is used to control the mechanical vibration to meet the requirement of stability. In this paper, the dynamic simulation of a certain type of roadheader is carried out, and the vibration reduction design of the electronic control box is carried out. The simplified model of the whole roadheader is established by UG, and the modal analysis of the whole machine is carried out, and the stress, deformation and modal characteristics of the structure are obtained. For the subsequent analysis of the vibration of each component and the impact of each component on the vibration of the electronic control box, the top of the cutting head, the tail of the transport mechanism, The deformation of each hydraulic cylinder is easy to occur. The deformation of the electronic control box mainly occurs in the range of 50 Hz-65Hz and 90 Hz or so. The vibration isolation design of the electronic control box should pay special attention to the vibration absorption effect of these frequency bands. The cutting head model of roadheader is built in UG and simplified. The explicit dynamic simulation analysis of cutting rock with cutting arm under different pitch angle is carried out in ANSYS/LS-DYNA software. The force and acceleration of the cutting head working at different pitch angles are obtained, and the vibration analysis of the cutting head during the working process is carried out. In order to prepare for the vibration analysis of the whole roadheader and the vibration isolation design analysis of the components, the force and torque of the cutting head during the rock cutting process are applied to the cutting head of the whole machine model, and the transient dynamics analysis of the whole machine is carried out. Then the dynamic response results of each component are viewed, and its influence on the vibration response of the electronic control box is analyzed. Then, the existing vibration absorption system model of the electronic control box is constructed, and the harmonic response analysis is carried out, and it is found that no matter in any frequency section, The vibration in vertical direction of the electronic control box is the most serious. By analyzing the frequency domain curve, it is found that the resonance state between the electronic control box and the input load is reached in 71Hz. Based on this, a two-stage vibration absorption design is proposed. The harmonic response simulation of the parameterized structure is carried out. The position of the second stage damping pad is found when the damping effect is the best. The vibration response of the electronic control box in the existing damping design and the optimized two stage damping design is compared. It is verified that the effect of the two-stage damping design is obviously better than that of the existing damping design.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD421.5

【参考文献】

相关期刊论文 前10条

1 孙英;王义亮;杨兆建;;悬臂式纵轴掘进机整机模态分析[J];煤炭技术;2016年10期

2 张建水;冀亚仙;张艳峰;王玮;刘杰;;基于ANSYS的掘进机刀盘模态分析与研究[J];机械设计;2016年09期

3 李晓豁;杨杰;焦丽;徐广明;李婷;郑有山;;支撑式冲击破岩掘进机垂向随机振动响应分析[J];辽宁工程技术大学学报(自然科学版);2016年04期

4 张武鹏;孙大刚;陈俊海;张弘;张万同;;掘进机电控箱阻尼缓冲系统特性分析[J];工程机械;2016年04期

5 毛君;许文馨;;掘进机坡角工况下转向动力学特性仿真[J];辽宁工程技术大学学报(自然科学版);2015年11期

6 黄建农;方立宇;董志峰;;EBH300A横轴悬臂式掘进机截割头结构振动模态分析[J];煤矿机械;2015年10期

7 李晓豁;王金兴;郭娜;董伟松;杨杰;;冲击破岩掘进机工作机构支臂与油缸铰点力仿真[J];辽宁工程技术大学学报(自然科学版);2015年07期

8 杜道;王义亮;杨兆建;王焱金;;纵轴式掘进机横向截割中电控箱振动响应分析[J];煤炭技术;2015年07期

9 亢红波;李占龙;韩斌慧;张建广;;隧道掘进机电控箱振动特性试验研究[J];西安建筑科技大学学报(自然科学版);2015年03期

10 李献;邹晓阳;徐海;郑辉;;硬岩掘进机的动力吸振方案优化研究[J];噪声与振动控制;2015年03期

相关博士学位论文 前1条

1 魏晓华;悬臂式掘进机截割过程动态特性分析与性能预测[D];辽宁工程技术大学;2013年

相关硕士学位论文 前6条

1 吕正生;高温环境下钢丝网垫减振器的力学特性研究[D];南京航空航天大学;2014年

2 胡海宝;钢丝网垫减振器减振安装系统优化设计研究[D];南京航空航天大学;2013年

3 张志红;筒状结构焊接裂纹动力学特性与诊断方法研究[D];东北大学;2013年

4 潘先峰;EBZ-255型掘进机截割头截割性能研究[D];安徽理工大学;2011年

5 刘小哲;纵轴式掘进机虚拟样机实现及性能研究[D];山东科技大学;2011年

6 吴晓璐;某船用设备减振性能仿真分析[D];华中科技大学;2008年



本文编号:1659644

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1659644.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a522d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com