柔性导轨矿井提升容器横向摆动行为研究
本文选题:柔性导轨 + 矿井提升 ; 参考:《中国矿业大学》2015年博士论文
【摘要】:矿井提升系统是连接矿山井下生产系统和地面工业广场的纽带,素有矿井生产的咽喉之称。提升容器在井筒内运行需设导向装置,提升容器的导向装置可分为刚性导轨和柔性导轨两大类。与刚性导轨相比,柔性导轨具有结构简单、安装方便、节省钢材、施工期短、通风阻力小、使用寿命长、后期维护工作量小等诸多优点。然而柔性导轨提升容器横向摆动受到提升速度、通风速度、张紧力及容器终端质量等因素的影响,其摆动行为十分复杂,对柔性导轨提升容器横向摆动行为缺乏系统研究。如何在考虑容器提升速度、井筒通风和柔性导轨张紧力等诸多实际影响因素的条件下,获得柔性轨道提升容器在运行过程中的摆动行为,并最终合理确定柔性轨道提升系统的规划布局成为困扰业界数十年的难题。目前国内对于柔性导轨矿井提升系统的设计主要依据《煤矿安全规程》、GB 50830-2013《冶金矿山采矿设计规范》、GB 50771-2012《有色金属采矿设计规范》及GB 16423-2006《金属非金属矿山安全规程》等国家标准中关于柔性导轨井筒布局安全间隙的统一规定,安全间隙的确定尚无科学合理的理论依据。本文对柔性轨道提升系统的横向摆动行为进行了系统研究,旨在提出一种预测柔性导轨提升容器横向摆动行为的方法,揭示柔性导轨矿井提升容器的摆动机理。由于柔性导轨、提升钢丝绳与平衡尾绳本质上为无穷多自由度的连续体,将其视为连续体计算提升容器的摆动行为极难实现,为此本文首先对柔性导轨提升系统横向摆动的等效质量及等效刚度进行研究。基于瑞利能量法对柔性导轨、提升钢丝绳与平衡尾绳横向摆动的等效质量进行了推导,结果表明可将其质量的三分之一作为变位质量附加到提升容器上。采用连续体力学理论推导出柔性导轨、提升钢丝绳及平衡尾绳的挠曲线方程,在此基础上分别推导得到了柔性导轨、提升钢丝绳与平衡尾绳横向摆动等效刚度的对数公式和倒数公式,两公式计算得到的等效弹簧刚度高度一致,误差不超过1%。建立了考虑张紧钢丝绳自身质量的横向振动模型并推导出了张紧钢丝绳的横向固有频率公式,结果表明考虑张紧钢丝绳的自身质量后,其横向固有频率随着位置的变化而变化。此外,在考虑张紧钢丝绳自身质量的条件下,横向扰动在张紧钢丝绳中传播的相速度和群速度不相等,呈现出色散现象,并且横向扰动在张紧钢丝绳中传播的过程中出现衰减。然后,分别在郑州煤炭工业(集团)有限责任公司大平煤矿主井和振兴二矿主井对横向扰动的传播时间进行了实测,结果表明所推导公式能够提高准确性。为了预测扰动力即横向气动力及科里奥利力作用下柔性导轨提升容器横向摆动行为,在等效质量及等效刚度的基础上,基于牛顿第二定律和转动定律,分别建立了考虑导向装置与柔性导轨之间间隙时提升容器的非光滑横向振动模型及非光滑扭转振动模型。采用Navier-Stokes方程以及k-?SST湍流模型做为井筒中空气流动的流体计算模型,基于有限体积法及动态网格更新方法,编写了并行化的ANSYS FLUENT用户自定义程序(UDF)实现容器按指定速度曲线提升以及计算并输出容器所受到的气动力。基于非光滑横向振动模型及非光滑扭转振动模型,采用Matlab数值求解扰动力作用下柔性导轨提升容器的横向摆动位移。以姚桥矿主井箕斗提升系统为例进行了数值求解,并与文献中的实测数据进行比较,验证了所建模型的正确性。利用流致振动模型,研究了单容器带平衡锤、双容器和四容器三种典型井筒布局的柔性导轨提升容器的横向摆动特性。计算分析了容器提升过程中容器周围的气动压力分布、流场速度分布以及流线分布。结果表明当两个相向运行的容器在井筒中交会时会产生明显的气动冲击力及气动冲击力矩,作用在单容器、双容器和四容器上的横向气动力依次减小,并且气动力对容器摆动的影响要远大于科里奥利力的影响。此外,单容器带平衡锤布局的活塞效应最强,双容器布局和四容器布局的活塞效应逐渐减弱。从空气动力学角度讲,推荐优先采用四容器布局,然后是双容器布局,最后是单容器带平衡锤布局。利用流致振动模型,分别分析了提升速度、通风速度、导向装置与柔性导轨之间的间隙、张紧力及容器终端质量等提升参数对柔性导轨提升容器横向摆动特性的影响。结果表明作用在容器上的气动力与提升速度和通风速度的二次方成正比,随着提升速度和通风速度的不断增大,容器的横向摆动幅值亦不断增大。此外,随着导向装置与柔性导轨之间的间隙不断增大,提升容器的横向摆动幅值也随之均匀增大。对于容器交会过程中作用在容器上的气动冲击力,使用Matlab的曲线拟合工具采用正弦函数和余弦函数进行曲线拟合,拟合结果表明二倍频的余弦函数和正弦函数可以较好的拟合气动冲击力。通过对影响容器横向摆动幅值的各因素进行灵敏度分析发现,提升速度的灵敏度最大,其次是张紧重锤的质量和通风速度,随后是柔性导轨与导向装置之间的间隙,装载质量的灵敏度最小。最后对柔性导轨矿井提升系统的横向摆动进行了现场实测。通过采用澳大利亚先进导航公司的光纤陀螺惯性导航系统Spatial FOG INS对龙首矿混合井罐笼下放过程中的轨迹和西二采区副井罐笼下放过程中的运行轨迹进行了实测,并与计算结果进行了对比,验证本文所提计算方法的正确性。
[Abstract]:The mine hoisting system is the link between the mine underground production system and the ground industrial square. It is known as the throat of the mine production. The lifting vessel needs to set up the guiding device in the wellbore. The guiding device of the lifting vessel can be divided into two kinds of rigid guide and flexible guide rail. Compared with the rigid guide rail, the flexible guide rail has a simple structure and installation. It is convenient, saving steel, short construction period, small ventilation resistance, long service life, and small post maintenance work. However, the lateral swing of the flexible rail lifting vessel is affected by the factors such as lifting speed, ventilation speed, tension force and the terminal quality of the container, and its swinging behavior is very complicated, and the lateral swing of the flexible guide rail lifting vessel is swinging. For the lack of systematic research, it is a difficult problem that how to obtain the wobble behavior of the flexible rail lifting vessel in the operation process under the conditions of many actual factors such as the lifting speed of the container, the wellbore ventilation and the tensioning force of the flexible guide rail, and finally to rationally determine the layout of the flexible rail lifting system for several decades. The design of the mine hoisting system for flexible guideway mainly is based on the unified specification of the safety regulations of Coal Mine Safety Regulations > GB 50830-2013< metallurgical mine design specification > GB 50771-2012< nonferrous metal mining design specification > and GB 16423-2006< metal non metal mine safety regulations > on the safety clearance of the flexible guide wellbore layout. There is no scientific and reasonable theoretical basis for determining the safety clearance. In this paper, the lateral wobble behavior of the flexible rail lifting system is systematically studied. The purpose of this paper is to propose a method to predict the lateral swinging behavior of the flexible rail hoist, and to reveal the mechanism of the swinging of the lifting vessel in the flexible guide rail. In this paper, the equivalent mass and equivalent stiffness of the lateral swinging of the flexible rail lifting system are studied in this paper. Based on the Rayleigh energy method, the flexible guide rail, the hoisting wire rope and the balance tail rope are used in this paper. The equivalent mass of the swing is derived, and the result shows that 1/3 of its mass can be attached to the lifting vessel as the variable mass. The flexible guide rail is derived by the continuum mechanics theory, and the deflection curve equation of the wire rope and the balance tail rope is raised. On this basis, the flexible guide rail, the lifting wire rope and the balance tail rope are derived. The logarithmic formula and the reciprocal formula of the equivalent stiffness of the lateral swinging, the equivalent spring stiffness obtained by the two formula are highly consistent, and the error does not exceed 1%.. The transverse vibration model of the tension steel rope has been established and the formula of the transverse natural frequency of the tensioned wire rope is derived. The result shows that the self mass of the tensioned wire rope is considered. At the same time, the transverse natural frequency changes with the change of the position. In addition, under the condition of the self mass of the tensioned wire rope, the phase velocity and the group velocity propagating in the tensioned wire rope are not equal, and the dispersion phenomenon appears, and the transverse disturbance attenuates during the propagation of the tensioned wire rope. Then, in Zhengzhou, The main well of Daping Coal Mine of coal industry (Group) Co., Ltd. and the main shaft of Zhenxing two mine have measured the propagation time of lateral disturbance. The results show that the derived formula can improve the accuracy. In order to predict the lateral oscillation of the flexible guide rail lift vessel under the effect of lateral aerodynamic force and Corioli force, the equivalent mass and the equivalent mass are predicted. Based on the equivalent stiffness, based on Newton's second law and the law of rotation, the non smooth transverse vibration model and the non smooth torsional vibration model of the lifting vessel are established to consider the gap between the guiding device and the flexible guide. The Navier-Stokes equation and the k- SST turbulence model are used as the fluid calculation model for the air flow in the wellbore. Based on the finite volume method and the dynamic grid updating method, a parallel ANSYS FLUENT user custom program (UDF) is developed to improve the container by the specified speed curve and to calculate and output the aerodynamic force. Based on the non smooth transverse vibration model and the non smooth torsional vibration model, the Matlab numerical solution is used to solve the disturbance power effect. The lateral swinging displacement of the flexible guide rail lifting vessel is numerically solved by the example of the skip lifting system in the main shaft of Yao Bridge Mine, and compared with the measured data in the literature, the correctness of the model is verified. By using the flow induced vibration model, three typical wellbore layout of the single container with the balance hammer, the double container and the four container are studied. The aerodynamic pressure distribution around the container, the velocity distribution of the flow field and the flow line distribution around the container during the lifting of the vessel are calculated and analyzed. The results show that the aerodynamic impact and the aerodynamic shock moment of the two vessels running in the wellbore will produce obvious aerodynamic impact and aerodynamic shock moment, which are used in a single container, a double container and a double container. The lateral aerodynamic force on the four container decreases in turn, and the effect of the aerodynamic force on the swing of the container is much greater than the influence of the Coriolis force. In addition, the piston effect of the single container with the balance hammer layout is the strongest, and the piston effect of the double container layout and the four container layout is gradually weakened. From the aerodynamics point of view, the four container layout is recommended first. Then it is a double container layout, and finally the layout of a single container with balance hammer. Using the flow induced vibration model, the effects of lifting speed, ventilation speed, clearance between the guiding device and the flexible guide rail, the tension and the terminal quality of the container, on the lateral swinging characteristics of the flexible rail lift container are analyzed. The results show that the effect is on the container. The aerodynamic force on the top is proportional to the two times of the lifting speed and the ventilation speed. With the increase of the lifting speed and the ventilation speed, the lateral swing amplitude of the container is also increasing. In addition, with the increasing gap between the guide and the flexible guide, the transverse swing amplitude of the lifting vessel is also increased evenly. The aerodynamic impact force on the container is used in the process, and the curve fitting tool of Matlab is used to fit the curve with sine function and cosine function. The fitting results show that the cosine function and the sine function of two frequency doubling can fit the aerodynamic impact better. It is found that the sensitivity of the lifting speed is the greatest, followed by the mass and ventilation speed of the tensioned weight hammer, followed by the gap between the flexible guide and the guiding device, and the minimum sensitivity of the loading quality. Finally, the field measurement of the lateral swing of the flexible rail mine hoisting system is carried out by using the optical fiber of the Australian advanced navigation company. The Spatial FOG INS gyroscope inertial navigation system (gyro) has measured the trajectory of the cage down process of the dragon head mine and the running track of the cages in the west two mining area, and compared the results with the calculation results to verify the correctness of the proposed method.
【学位授予单位】:中国矿业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TD531
【相似文献】
相关期刊论文 前10条
1 李剑峰;;提升容器连接叉的缺陷安全分析[J];煤矿机械;2009年08期
2 郭炉钢;杨建奎;李祝民;;大型提升容器快速卡绳装置研究[J];煤矿机械;2009年11期
3 李剑峰;;提升容器连接叉的缺陷安全分析[J];煤矿机械;2009年12期
4 龙雨苍;;矿井提升容器采用铝合金问题的探讨[J];矿山机械;1983年04期
5 刘国良;;对《矿井提升容器采用铝合金问题的探讨》的补充[J];矿山机械;1984年08期
6 陈孟明;轻型提升容器简介[J];中州煤炭;1991年04期
7 苏学常,张景行;轻合金提升容器摩擦火花安全性试验研究[J];煤炭科学技术;1996年02期
8 谢小京;新型结构提升容器的设计与体会[J];煤炭工程;2004年08期
9 刘春峰;任国龙;孙启龙;钱凤禄;王树胜;林士勇;刘芒果;张洪友;;提升容器连接叉的缺陷安全分析[J];煤炭工程;2006年02期
10 张昌顺;;多绳摩擦提升容器挂设施工技术[J];安装;2009年03期
相关会议论文 前3条
1 刘扬;陈安宁;王庆林;;提升机提升容器位置检测点的改进[A];山东省煤炭学会2006年年会论文集[C];2006年
2 郭金龙;史二听;张远志;郑家军;梁展;;多绳摩擦提升机采用“3+1”不起吊提升容器施工法的研究与推广[A];煤炭机电与自动化实用技术[C];2012年
3 赵玉彬;;煤矿提升机井筒开关的改进与应用[A];第18届全国煤矿自动化与信息化学术会议论文集[C];2008年
相关博士学位论文 前2条
1 吴仁愿;柔性导轨矿井提升容器横向摆动行为研究[D];中国矿业大学;2015年
2 李占芳;矿井提升系统振动特性及典型故障诊断研究[D];中国矿业大学;2008年
相关硕士学位论文 前5条
1 梁波;大型提升容器快速卡绳装置研究[D];中国矿业大学(北京);2008年
2 赵越;煤矿提升容器激光定位系统设计[D];山东科技大学;2010年
3 田峰;井筒提升容器运行效应及其空气动力特性研究[D];湖南科技大学;2007年
4 寇保福;重载深井调绳系统研究[D];太原理工大学;2011年
5 黄亚坤;基于ANSYS的大容量箕斗的结构设计及优化[D];安徽理工大学;2013年
,本文编号:1817128
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1817128.html