当前位置:主页 > 科技论文 > 矿业工程论文 >

厚黄土覆盖区煤矿开采对不同水力条件松散含水层影响的数值模拟研究

发布时间:2018-04-28 23:14

  本文选题:厚黄土地区 + 煤矿开采 ; 参考:《太原理工大学》2017年硕士论文


【摘要】:我国煤炭资源丰富,煤炭作为主体能源,对经济社会发展具有重要作用,同时煤矿开采也对地下水环境带来的不可恢复的破坏。在我国西北地区,煤矿往往存在于较厚的黄土层下,而厚黄土层中的松散含水层则是当地居民的主要用水水源,由于近年来煤矿的大量开采,导致煤矿上覆地层结构发生改变,形成冒落裂隙带,使得煤层上覆含水层地下水沿此通道快速流失,或加大松散含水层地下水向下伏含水层的越流补给量,直接影响居民生活用水,间接破坏该地区地下水平衡。针对厚黄土地区煤矿开采对第四系松散含水层破坏的这一问题,本文以山西省长治市屯留县境内常村煤矿为研究背景,在调查、收集、分析该地区地质、水文地质资料的基础上,构建水文地质概念模型,数学模型,运用基于有限差分法的GMS地下水数值模型模拟的计算机软件对模型进行模拟求解。通过改变松散含水层基础水力条件,定量研究S6采区开采结束后,导水裂隙带未沟通松散含水层、弱透水含水层性质不变条件下,采煤对不同水力特征的第四系松散含水层的影响。根据模拟结果,得到主要结论如下:(1)煤矿开采前,研究区内松散含水层地下水处于自然状态下的动态平衡,当煤矿开采结束后,冒落裂隙带形成,加大松散含水层地下水通过导水裂隙带向下的越流补给量,以致采区范围出现水位大幅度下降情况,产生降落漏斗,漏斗影响范围及最大水位降深随时间的增加而增大,并在预测前期变化较大,后期变化较小。(2)不同渗透系数情况下,保证冒落裂隙带距弱透水层底板距离不变,弱透水层厚度及渗透系数等条件不变,以研究采煤对不同渗透系数松散含水层的影响。模拟结果显示,不同渗透系数下,降落漏斗的影响面积、漏斗中心最大水位降深不同,预测前期渗透系数大者,降深大,影响面积大,预测后期,渗透系数大者降深小,影响面积大,最大影响面积为73.00km~2,最大降深为13.60m。(3)不同水头情况下,保证冒落裂隙带距弱透水层底板距离不变,弱透水层厚度及渗透系数等条件不变,以研究采煤对不同水头松散含水层的影响,模拟结果显示,不同水头条件下,降落漏斗的影响面积、漏斗中心最大水位降深不同,整个预测期内,水头大者,影响面积及最大水位降深大,最大影响面积达74.90km~2,最大水位降深达18.81m。
[Abstract]:China is rich in coal resources. Coal, as the main energy source, plays an important role in the development of economy and society. At the same time, coal mining also brings irreparable damage to the groundwater environment. In northwest China, coal mines often exist under the thick loess layer, and the loose aquifer in the thick loess layer is the main water source for the local residents. Because of the large amount of coal mining in recent years, the overlying stratum structure of the coal mine has been changed. The formation of caving fissure zone causes the rapid loss of groundwater in the overlying aquifer along this channel, or increases the overflowing recharge of the groundwater in the loose aquifer, which directly affects the domestic water consumption and indirectly destroys the groundwater balance in this area. In view of the problem that coal mining in thick loess area destroys the Quaternary loose aquifer, this paper takes Changcun Coal Mine in Tunliu County, Changzhi City, Shanxi Province as the research background, investigates, collects and analyzes the geology of this area. On the basis of hydrogeological data, a hydrogeological conceptual model and a mathematical model are constructed, and the model is simulated and solved by computer software of GMS groundwater numerical model based on finite difference method. By changing the hydraulic conditions of the foundation of the loose aquifer, the quantitative study is made on the condition that, after the exploitation of the S6 mining area, there is no communication between the loose aquifer and the weakly permeable aquifer in the fissure zone. The influence of coal mining on Quaternary loose aquifer with different hydraulic characteristics. According to the simulation results, the main conclusions are as follows: before the coal mining, the groundwater of the loose aquifer in the study area is in the dynamic equilibrium under the natural state, and when the coal mining is finished, the caving fissure zone is formed. Increasing the amount of overflowing recharge of the loose aquifer groundwater through the water diversion fissure zone, resulting in a large drop in the water level in the mining area, resulting in a drop funnel, the influence range of the funnel and the maximum depth of the water level drop increasing with the increase of time. In the case of different permeability coefficients, the distance between the caving fracture zone and the weak permeable layer bottom plate is not changed, the thickness of the weak permeable layer and the permeability coefficient are not changed. In order to study the influence of coal mining on the loose aquifer with different permeability coefficient. The simulation results show that the influence area of the drop funnel and the maximum water level in the center of the funnel are different under the different permeability coefficient, and the large permeability coefficient, the greater the depth, the larger the impact area, the lower the depth in the later stage of prediction, and the lower the depth in the later stage of prediction, the lower the maximum water level in the center of the funnel is. The influence area is large, the maximum influence area is 73.00kmm2, and the maximum depth is 13.60m.m3) under different water heads, the distance between the caving fissure zone and the weak permeable layer bottom plate is not changed, the thickness of the weak permeable layer and the permeability coefficient are not changed. In order to study the influence of coal mining on the loose aquifer with different water heads, the simulation results show that under different water head conditions, the influence area of the drop funnel, the maximum water level drop depth in the center of the funnel is different, and the water head is large in the whole prediction period. The influence area and the maximum water level drop depth are great, the maximum influence area is 74.90 km2, and the maximum water level drop depth is 18.81 m.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD82

【相似文献】

相关期刊论文 前10条

1 段长营;开滦矿区含水层的命名及含水层名称的统一[J];河北能源职业技术学院学报;2002年01期

2 毛印鸿;含水层厚度的确定[J];煤田地质与勘探;1984年02期

3 申宝宏;松散含水层水的治理途径[J];煤矿开采;1995年02期

4 张利平;彭伟斌;;定量解释含水层时误差分析与探讨[J];中国新技术新产品;2012年08期

5 马嘉荣;喻怀君;;淮北临涣矿区含水层降压沉陷问题的探讨[J];勘察科学技术;1990年05期

6 杨连云;;直流电法仪在矿井含水层探测中的应用[J];水利与建筑工程学报;2010年02期

7 马秀芬;翟立娟;傅耀军;唐燕波;李七明;苗建;穆金霞;李岩;;鄂尔多斯盆地煤炭基地含水层及其保护研究[J];中国煤炭地质;2012年08期

8 刘同吉,马春阳,张勇;常村井田含水层重新划分问题的探讨[J];煤;2001年04期

9 刘兴海;神东矿区含水层含水特征分析[J];中国煤炭;2005年11期

10 刘自俭;;马家滩矿区冯记沟煤矿含水层分析[J];西北煤炭;2008年03期

相关会议论文 前1条

1 高淑琴;戴长雷;;高寒区傍河浅薄含水层集中取水工程分析及涌水量计算[A];寒区水资源研究[C];2008年

相关博士学位论文 前2条

1 陈立;长治盆地群采区含水层结构变异及水资源动态研究[D];中国地质大学(北京);2015年

2 孙淑琴;地面核磁共振探测地下水数值模拟与影响因素分析[D];吉林大学;2005年

相关硕士学位论文 前9条

1 甄战战;大南湖侏罗系弱胶结含水层动态及介质特征研究[D];中国矿业大学;2015年

2 辛宇峰;厚黄土覆盖区煤矿不同开采条件对松散含水层影响的数值模拟研究[D];太原理工大学;2016年

3 姚庆健;郭屯煤矿含水层参数计算及井筒沉降与偏斜机理分析[D];安徽理工大学;2017年

4 杨伟涛;砂砾含水层地下水源热泵抽灌井间距的数值模拟研究[D];沈阳建筑大学;2013年

5 许伟;采煤影响下长治盆地含水层空间分区变化研究[D];石家庄经济学院;2013年

6 冯俊亮;第四系巨厚含水层水文地质参数联合推断研究[D];内蒙古农业大学;2013年

7 樊燕;煤矿开采对上覆含水层影响的数值模拟研究[D];太原理工大学;2011年

8 袁建伟;水源热泵地下含水层温度场的研究[D];北京建筑工程学院;2009年

9 舒勤峰;天然河床反向渗滤取水水量计算方法研究[D];成都理工大学;2013年



本文编号:1817329

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/1817329.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户119f5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com