大采深工作面煤层底板采动破坏及特征研究
本文选题:大采深 + 底板破坏 ; 参考:《河北工程大学》2017年硕士论文
【摘要】:九龙矿建矿至今,先后有4个工作面位于野青煤层之中。每个工作面都不尽相同的有或大或小的突水。本论文以峰峰集团九龙矿野青4号煤层15445N工作面为研究对象,该工作面平均埋深850m,属于大采深工作面。结合九龙矿水文地质资料及对之前野青煤层工作面的开采经验,采用从理论分析,到数值模拟,最后现场使用钻孔注水法实测的研究方法过程,对可能造成15445N工作面底板破坏原因的进行理论分析,并对工作面底板破坏深度及特征规律做了模拟预测和现场实测,并得到以下成果:(1)底板破坏的原因有多种,包括底板下含水层的压力、底板岩体的岩性搭配、节理裂隙等地质构造因素,还有工作面的回采工艺及工程采动因素,这些因素柔和在一起,都是研究底板破坏所要考虑的因素。(2)使用数值模拟技术,对工作面开采过程中底板不同深度应力状况及底板塑性变形范围和特征进行了模拟研究。工作面底板破坏最大破坏深度32m。(3)通过工程试验测得开采对监测点开始产生影响的距离为66m左右,监测点越浅影响距离越远;最大破坏位置位于工作面前方5m处,采动影响范围为工作面前后20~55m范围内,工作面监测点实测最大底板破坏深度为34m。
[Abstract]:Jiulong mine up to now, there are four faces in the coal seam. Each face has different water inrush, large or small. This paper takes the 15445N coal face of Yuqing No. 4 coal seam of Fengfeng Group Jiulong Coal Mine as the research object. The average buried depth of this working face is 850m, which belongs to the large mining face. Combined with hydrogeological data of Jiulong mine and mining experience of Qianyeqing coal face, the research method from theoretical analysis to numerical simulation is adopted. This paper makes a theoretical analysis of the possible causes of floor failure in 15445N working face, and makes simulation prediction and field measurement on the depth and characteristics of the floor damage of the working face, and obtains the following results: 1) there are many reasons for the failure of the floor. These factors include the pressure of the aquifer under the bottom plate, the lithologic collocation of the floor rock mass, the geological structural factors such as joints and fissures, as well as the mining process of the working face and the factors of engineering mining, which are soft together. Both are the factors to be considered in the study of floor failure. Numerical simulation technique is used to simulate the stress state of the floor at different depths and the range and characteristics of plastic deformation of the floor during the mining process of the working face. The maximum damage depth of the working face floor is 32m.f3) the distance from which the mining affects the monitoring point is about 66m, the more shallow the monitoring point is, the farther the influence distance is, and the maximum damage location is located at 5m in front of the working face. The influence range of mining movement is 2055 m before and after the working face, and the maximum floor failure depth measured at the monitoring point of the working face is 34 m.
【学位授予单位】:河北工程大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD745
【参考文献】
相关期刊论文 前10条
1 段宏飞;;底板破坏深度六因素线性预测模型[J];岩土力学;2014年11期
2 赵延林;曹平;万文;王卫军;张盛国;邹声华;;巷道前伏承压溶洞突水灾变流固耦合分析[J];中南大学学报(自然科学版);2014年05期
3 李利平;李术才;李树忱;冯现大;李国莹;刘斌;王静;许振浩;;松散承压含水层下采煤的流固耦合模型试验与数值分析研究[J];岩土工程学报;2013年04期
4 徐智敏;孙亚军;巩思园;朱宗奎;;高承压水上采煤底板突水通道形成的监测与数值模拟[J];岩石力学与工程学报;2012年08期
5 杨天鸿;刘洪磊;朱万成;孟召平;王睿;;基于有效应力概念的矿井临界突水系数修正及应用[J];岩石力学与工程学报;2011年S2期
6 姜耀东;吕玉凯;赵毅鑫;张党育;;承压水上开采工作面底板破坏规律相似模拟试验[J];岩石力学与工程学报;2011年08期
7 施龙青;翟培合;魏久传;朱鲁;;三维电法超前探水技术应用[J];隧道建设;2011年S1期
8 张华磊;王连国;;采动底板附加应力计算及其应用研究[J];采矿与安全工程学报;2011年02期
9 李伟利;叶丽萍;;基于板模型对采场底板破坏与突水机理研究[J];煤炭技术;2011年01期
10 韩进;施龙青;翟培合;李术才;于小鸽;;多属性决策及D-S证据理论在底板突水决策中的应用[J];岩石力学与工程学报;2009年S2期
相关博士学位论文 前2条
1 李昂;带压开采下底板渗流与应力耦合破坏突水机理及其工程应用[D];西安科技大学;2012年
2 孙建;倾斜煤层底板破坏特征及突水机理研究[D];中国矿业大学;2011年
,本文编号:1951865
本文链接:https://www.wllwen.com/kejilunwen/kuangye/1951865.html