大采高液压支架快速移架与姿态控制研究
本文选题:液压支架 + 移架速度 ; 参考:《太原科技大学》2017年硕士论文
【摘要】:我国是一个多煤少油的国家,已探明的煤炭储量占世界煤炭储量的33.8%,可采量位居第二。煤炭在我国的一次性能源结构中处于重要位置。为提高煤炭企业的生产效率,液压支架作为井下机械化综采工作面的重要支护设备,其运行性能及支护性能的提升(即液压支架的液压控制系统的性能及姿态控制精度)至关重要。本文以平阳重工大采高电液控制强力液压支架为研究对象具体研究工作主要为以下几个方面:1、首先介绍我国液压支架的发展概况,分析国内外液压支架的研究现状,对目前液压支架仍存在的问题进行总结。2、针对现阶段国内综采工作面液压支架的移架速度普遍低于采煤机的运行速度,影响综采工作效率的问题,本文利用功率键合图的方法推导系统的数学模型。在此基础上,完成液压控制系统AMESim仿真模型搭建,研究液压支架移架过程的动态特性。通过对泵站流量、伸缩缸的升降位移、伸缩缸与管路连接处的过流面积、液控单向阀的通流面积、供液管径等液压支架工作参数进行优化匹配,最终使液压支架升降柱速度分别达到0.57m/s、0.56 m/s,较原始参数分别提高了17%、16%。参数优化大大提升了液压支架的移架速度。3、对液压支架的运动状态进行理论分析,建立液压支架的运动学模型,并在此基础上推导液压支架结构件的数学模型,利用数学函数表示相关铰接点位置坐标及立柱倾角、千斤顶倾角、后摇杆倾角、掩护梁倾角、千斤顶行程等重要参数的数学表达式。4、在建立的液压支架数学模型的基础上,运用VisualC++6.0软件开发工具编写程序代码,完成液压支架动作的可视化界面设计。通过界面中图形显示区及参数输出区,确定相应顶梁倾角及前摇杆水平倾角下液压支架的姿态位置。迅速计算平衡千斤顶的运动行程,程序能够方便液压支架的姿态调节。对于支架设计过程中主要参数的确定及相关元件的选择提供有价值的参考信息。本论文利用计算机来对液压支架进行仿真模拟及辅助计算,一方面,预测系统各方面的性能实现最优化的参数匹配,提高支架运行速度;另一方面,通过设计辅助计算软件快速得到相关参数,为液压支架相关结构件的选择及相对位置调节时所需进行的参数设定提供了有利信息,从而达到液压控制系统性能的优化,摒弃原有设计中不断建立样机、试验、修改、再试验的过程,大大地缩短了设计周期,减少了设计成本,并在一定程度上为支架稳定运行及安全支护提供相关有价值的信息。
[Abstract]:China is a country with more coal and less oil. The proven coal reserves account for 33.8 percent of the world's coal reserves. Coal is in an important position in the disposable energy structure of our country. In order to improve the production efficiency of coal enterprises, hydraulic support is used as an important supporting equipment in mechanized fully mechanized mining face. It is very important to improve the operation performance and support performance (that is, the performance of hydraulic control system of hydraulic support and the precision of attitude control). In this paper, the main research work is as follows: 1. Firstly, the development of hydraulic support in China is introduced, and the research status of domestic and foreign hydraulic support is analyzed. This paper summarizes the problems existing in the hydraulic support at present, aiming at the problem that the moving speed of the hydraulic support in the domestic fully mechanized coal face is generally lower than that of the shearer at the present stage, which affects the working efficiency of the fully mechanized coal mining. In this paper, the power bond graph is used to derive the mathematical model of the system. On this basis, the simulation model of the hydraulic control system AMESim is built, and the dynamic characteristics of the hydraulic support are studied. The working parameters of hydraulic support, such as flow rate of pump station, lift and fall displacement of telescopic cylinder, overflow area of connection between telescopic cylinder and pipe, flow area of hydraulic control one-way valve, diameter of liquid supply pipe, etc, are optimized and matched. Finally, the lifting speed of the hydraulic support reached 0.57 m / s / s 0.56 m / s respectively, which was 17% higher than the original parameter. Parameter optimization greatly improves the moving speed of the hydraulic support. The movement state of the hydraulic support is analyzed theoretically, the kinematics model of the hydraulic support is established, and the mathematical model of the structure part of the hydraulic support is deduced on this basis. The mathematical expression of the important parameters, such as the position coordinates of the related hinge points, the inclination angle of the column, the inclination angle of the Jack, the inclination angle of the rear rocker, the inclination angle of the shield beam, the stroke of the Jack and so on, are expressed by mathematical functions. On the basis of the mathematical model of the hydraulic support, the mathematical model of the hydraulic support is established. The Visual C 6.0 software development tool is used to write the program code to complete the visual interface design of the hydraulic support action. The position of the hydraulic support under the inclined angle of the top beam and the horizontal dip angle of the front rocker is determined by the graphical display area and the output area of the parameters in the interface. Calculate the movement stroke of the balance Jack quickly, the program can facilitate the posture adjustment of the hydraulic support. It provides valuable reference information for the determination of the main parameters and the selection of related components in the design process. In this paper, the computer is used to simulate and calculate the hydraulic support. On the one hand, the performance of the prediction system is optimized to match the parameters, and the running speed of the support is improved, on the other hand, The related parameters can be obtained quickly by designing the assistant calculation software, which provides favorable information for the selection of the related structure parts of the hydraulic support and the setting of the parameters needed when the relative position is adjusted, so as to achieve the optimization of the performance of the hydraulic control system. The process of setting up prototype, testing, modifying and retesting continuously in the original design has greatly shortened the design period, reduced the design cost, and provided the relevant valuable information for the stable operation of the support and the safety support to a certain extent.
【学位授予单位】:太原科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD355.4
【参考文献】
相关期刊论文 前10条
1 文治国;侯刚;王彪谋;任怀伟;赵国瑞;;两柱掩护式液压支架姿态监测技术研究[J];煤矿开采;2015年04期
2 刘清;孟峰;牛剑峰;;放煤工作面支架姿态记忆控制方法研究[J];煤矿机械;2015年05期
3 赵龙;宋建成;田慕琴;许春雨;杨世华;于亚运;董光拽;尹卫兵;赵旭东;;综采工作面液压支架集中控制系统设计[J];工矿自动化;2015年02期
4 房兴才;薛焕焕;丁治国;;液压支架应用电液控制系统的简析[J];科技创新导报;2015年04期
5 尉建辉;;液压支架立柱焊接的胎具设计[J];中国高新技术企业;2014年29期
6 王国法;;工作面支护与液压支架技术理论体系[J];煤炭学报;2014年08期
7 王金凤;翟雪琪;冯立杰;;面向安全硬约束的煤矿生产物流效率优化研究[J];中国管理科学;2014年07期
8 朱南南;赵宝驹;王亚峰;;液压支架合理选型分析[J];科技展望;2014年09期
9 张辉;渠继刚;郑四周;徐睿;胡伟元;;大倾角大采高综采工作面倒架原因分析及防治措施[J];能源技术与管理;2013年05期
10 魏中良;廉自生;;电磁先导换向阀的流量性能研究[J];矿山机械;2013年08期
相关会议论文 前1条
1 王恩鹏;;我国综采液压支架现状及发展趋势[A];中国科协2004年学术年会第16分会场论文集[C];2004年
相关博士学位论文 前4条
1 胡波;液压支架智能控制系统研究[D];太原理工大学;2014年
2 王保明;液压支架关键元件内部流动及系统工作特性研究[D];中国矿业大学;2011年
3 舒凤翔;高端液压支架液压系统及关键元件研究[D];中国矿业大学;2009年
4 韩伟;液压支架控制系统大流量阀与移架速度定量化研究[D];煤炭科学研究总院;2006年
相关硕士学位论文 前6条
1 张欣;我国煤矿行业工伤保险问题研究[D];安徽师范大学;2013年
2 史姣;大缸径液压支架液压系统的仿真研究[D];太原科技大学;2012年
3 韩占冰;大倾角煤层走向长壁综采工作面系统参数优化研究[D];西安科技大学;2009年
4 杨涛;乳化液泵站液压系统建模仿真与控制系统开发[D];太原理工大学;2008年
5 李铁莲;液压支架中压力变送器及其检测系统研究[D];太原理工大学;2007年
6 宁桂峰;液压支架三维动态设计与力学仿真研究[D];煤炭科学研究总院;2004年
,本文编号:2094189
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2094189.html