当前位置:主页 > 科技论文 > 矿业工程论文 >

矿区土壤-小麦重金属迁移特征模拟研究

发布时间:2018-07-10 04:19

  本文选题:矿区 + 土壤-小麦 ; 参考:《中国矿业大学》2017年硕士论文


【摘要】:矿产资源开发利用改变了区域生态系统的物质循环和能量流动,造成了严重的生态破坏和环境污染。其中,矿区土壤重金属污染是严重的问题之一。论文设计并实施2014、2015、2016年三期野外自然条件下的矿区土壤-小麦重金属迁移模拟实验,分析Cr添加场地、Pb添加场地、Zn添加场地和正常对照场地3种添加重金属Cr、Pb、Zn和2种常见重金属Cd、Cu在土壤-小麦系统中的迁移、富集特征。研究可为矿区土壤环境质量改善和粮食安全调控提供数据基础和理论依据。主要结论如下:(1)基于野外模拟实验的基础数据,分析了矿区土壤-小麦重金属迁移、富集特征。①四类场地土壤5种重金属随时间的变化规律存在差异,小麦中5种重金属含量大体先减后增。②添加重金属Cr、Pb、Zn在土壤和小麦中含量数据的离散程度均要大于Cd、Cu。③三类添加场地土壤和小麦中Cr、Pb、Zn均高于正常对照场地,说明人为添加重金属行为直接或间接地促进了重金属元素向土壤-小麦系统中转化和迁移。④三类添加场地土壤Cr、Pb、Zn存在由含量高处向含量低处迁移的现象,符合溶质运移规律。⑤四类场地小麦对Zn的富集能力最强、Pb的富集能力最弱。(2)建立了矿区土壤-小麦重金属迁移模型,并对徐州柳新矿区进行数值模拟。①四类场地土壤-小麦中重金属含量间绝大部分相关系数|r|0.5、灰色度fG(r)0.5,并不存在简单的线性相关关系。②四类场地土壤和小麦中重金属含量的最优曲线回归模型以二次曲线模型和抛物线模型居多。Zn和Cu曲线回归模型的相关性较显著,而Cr、Pb、Cu曲线回归模型的相关性不显著。除Cr以外,正常对照场地重金属曲线回归模型的相关系数岁要高于其他三种添加场地。③小麦中5种重金属的作物富集因子PAF与土壤相应重金属浓度数学模型的相关系数R2均大于0.5,说明两者之间的相关性显著,建立的数学模型可行。其中,小麦中Cd的PAF与土壤重金属Cd浓度数学模型的相关系数R2达到0.918,呈现极显著相关性。④优选的分配估计模型对徐州柳新矿区煤矸石复垦场地、粉煤灰复垦场地和对照场地小麦中Cr的预测效果相对较好、Cd的预测效果相对较差。(3)首先,评价了土壤-小麦系统中重金属生态危害程度,四类场地土壤-小麦中5种重金属总体处于轻度污染水平。在此基础上,设计并实施矿区土壤重金属Cr、Pb、Zn修复植物筛选实验,为矿区土壤重金属污染提供了一种修复植物筛选办法,并初步得出百喜草和狗牙根可做为土壤Cr的修复植物,苜蓿和落花生可做为土壤Pb的修复植物,东南景天和佛甲草对土壤Zn的修复效果不明显。
[Abstract]:The exploitation and utilization of mineral resources have changed the material circulation and energy flow of the regional ecosystem and caused serious ecological damage and environmental pollution. Among them, soil heavy metal pollution is one of the serious problems in mining area. This paper designs and implements a simulation experiment of heavy metal transport between soil and wheat in mining area under three natural conditions in the field in 2014, 2015 and 2016. The migration and enrichment characteristics of three kinds of heavy metals, CrPbPbZn and two common heavy metals, CD and Cu, in the soil-wheat system were analyzed. The study can provide data basis and theoretical basis for soil environmental quality improvement and food security control in mining area. The main conclusions are as follows: (1) based on the basic data of field simulation experiments, the changes of five heavy metals over time in soil and wheat in mining area were analyzed. The contents of 5 kinds of heavy metals in wheat decreased first, then increased 2. 2 in soil and wheat. The dispersion of the data of CRPbZn in soil and wheat was higher than that in the soil of three kinds of addition sites of CdCu.3 and in wheat, which was higher than that in normal control sites. The results showed that anthropogenic addition of heavy metals directly or indirectly promoted the transformation and migration of heavy metal elements into soil-wheat system. In accordance with the solute migration rule, wheat has the strongest enrichment ability of Zn and the weakest enrichment ability of Pb. (2) the heavy metal migration model of soil-wheat in mining area was established. Numerical simulation of Xuzhou Liuxin mining area. 1.Most correlation coefficient of heavy metal content between soil and wheat in four kinds of sites is r 0.5, grey degree fG (r) 0.5. There is no simple linear correlation between soil and wheat in four types of sites. The correlation between the quadratic curve model and the parabola model was significant in the optimal curve regression model of heavy metal content. The correlation between the curve regression model and the Cu curve regression model was significant. However, there was no significant correlation between the curve regression model of CrPbCU and Cu. Except for Cr, The correlation coefficient of curve regression model of heavy metals in normal control site was higher than that of the mathematical model of soil heavy metal concentration and PAF of 5 heavy metals in the other three kinds of wheat. 3. The correlation coefficient R2 of PAF was higher than that of the mathematical model of soil concentration of heavy metals. All of them are more than 0.5, which means that there is a significant correlation between them. The established mathematical model is feasible. Among them, the correlation coefficient R2 between PAF of CD in wheat and CD concentration in soil reached 0.918, which showed highly significant correlation. 4 optimal allocation estimation model for coal gangue reclamation site in Xuzhou Liuxin mining area. The prediction effect of Cr and CD in fly-ash reclamation site and control field was relatively good. (3) the ecological damage degree of heavy metals in soil-wheat system was evaluated. Five kinds of heavy metals in four kinds of soil-wheat were in the level of light pollution. On the basis of this, the screening experiment of remediation plants for heavy metal Cr Pb Zn in the soil of mining area was designed and carried out, which provided a method for the screening of remediation plants for heavy metal pollution in the soil of mining area, and it was preliminarily concluded that Bahia grasses and Doggeana could be used as remediation plants for soil Cr. Alfalfa and peanut can be used as soil Pb remediation plants.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:S512.1;X53;X751

【参考文献】

相关期刊论文 前10条

1 贾赵恒;罗瑶;沈友刚;刘凡;蔡崇法;谭文峰;邱国红;;大冶龙角山矿区农田土壤重金属形态分布及其来源[J];农业环境科学学报;2017年02期

2 秦樊鑫;魏朝富;钟守琴;黄先飞;庞文品;姜鑫;;Soil heavy metal(loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China[J];Journal of Central South University;2016年09期

3 张厦;宋静;高慧;张强;刘赣;;回归模型法推导油菜田土壤Cd限值的不确定性[J];环境科学研究;2016年08期

4 刘亚纳;朱书法;魏学锋;苗娟;周鸣;关凤杰;;河南洛阳市不同功能区土壤重金属污染特征及评价[J];环境科学;2016年06期

5 刘巍;杨建军;汪君;王果;曹月娥;;准东煤田露天矿区土壤重金属污染现状评价及来源分析[J];环境科学;2016年05期

6 刘育辰;王莉淋;伍钧;杨刚;漆辉;邓仕槐;;四川城市生活垃圾重金属污染状况及来源分析[J];环境工程学报;2015年12期

7 荀久玉;;辽宁省污灌区土壤重金属铜、铬、镉和汞的形态研究[J];青海环境;2015年02期

8 杨启良;武振中;陈金陵;刘小刚;王卫华;刘艳伟;;植物修复重金属污染土壤的研究现状及其水肥调控技术展望[J];生态环境学报;2015年06期

9 石润;吴晓芙;李芸;冯冲凌;李韵诗;;应用于重金属污染土壤植物修复中的植物种类[J];中南林业科技大学学报;2015年04期

10 刘硕;吴泉源;张龙龙;蔡东全;周历媛;刘娜;曹学江;;基于野外实测光谱的污灌区土壤重金属污染快速监测[J];安全与环境学报;2015年02期

相关博士学位论文 前7条

1 宋凤敏;陕西典型铁尾矿库区土壤重金属迁移及其修复研究[D];西北农林科技大学;2016年

2 傅晓文;盐渍化石油污染土壤中重金属的污染特征、分布和来源解析[D];山东大学;2014年

3 王恒;吉林省土壤—水稻系统环境质量分析评估及重金属复合污染研究[D];中国科学院研究生院(东北地理与农业生态研究所);2014年

4 王成;长三角地区土壤—小麦系统微量元素迁移的地球化学特征[D];南京大学;2013年

5 杨金香;木本植物修复煤矿复垦区重金属迁移规律研究[D];安徽理工大学;2012年

6 高辉;几类常用非线性回归分析中最优模型的构建与SAS智能化实现[D];中国人民解放军军事医学科学院;2012年

7 董霁红;矿区充填复垦土壤重金属分布规律及主要农作物污染评价[D];中国矿业大学;2008年

相关硕士学位论文 前5条

1 付红艳;关于变异系数、偏度系数和峰度系数的U统计量检验法[D];吉林师范大学;2014年

2 魏本杰;微生物强化植物修复重金属污染土壤[D];湖南工业大学;2014年

3 徐国栋;土壤电动修复中重金属迁移的模拟研究[D];兰州大学;2014年

4 甘国娟;土壤—水稻系统重金属迁移特征与区域污染风险评价[D];中南林业科技大学;2013年

5 宁雄义;重金属矿区生态风险评价研究[D];浙江大学;2006年



本文编号:2112023

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2112023.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c84ff***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com