当前位置:主页 > 科技论文 > 矿业工程论文 >

相山铀矿混合铀矿石微生物浸出工艺试验及浸出机理初探

发布时间:2018-07-10 06:04

  本文选题:微生物浸铀 + 喷淋强度 ; 参考:《东华理工大学》2017年硕士论文


【摘要】:与传统方法相比微生物浸铀技术具有投资少、酸耗低、环境污染小、工艺流程简单等优点,越来越受到研究者的青睐。本文研究了不同因素对铀矿石浸出效果的影响,从喷淋强度、细菌接种量和铁浓度等方面分析了铀矿石的浸出作用规律和浸出效果,初步探讨了溶浸液与铀矿石的作用机理。具体研究内容与结果如下:喷淋强度试验表明,在浸出第108天,5%、10%、15%、20%、25%喷淋强度铀累计浸出率分别是80.97%、81.54%、91.40%、89.27%,81.83%,渣计浸出率分别是82.2%、88.5%、90.9%、88.35%、87.55%,累计耗酸率分别是8.58%、10.42%、11.13%、12.11%、13.27%。考虑酸浸周期、累计耗酸率、铀累计浸出率和渣计浸出率等因素,15%喷淋强度铀浸出效果最优。细菌接种量试验表明,浸出铀浓度和铀浸出率随细菌接种量的增多而升高,但30%细菌接种量浸出铀浓度和铀浸出率增加幅度开始减小。因此,适度提高细菌接种量,有利于铀矿石的浸出。铁浓度试验表明,9g/LFe~(2+)浸出铀浓度和铀浸出率低于5g/LFe~(2+)高于3g/LFe~(2+),5g/LFe~(2+)细菌活性最好,浸出效果最佳。9g/LFe~(3+)浸出铀浓度和铀浸出率与5g/LFe~(3+)相差不大。Fe~(3+)离子浓度越高,细菌活性越低,不利于细菌与矿石相互作用,Fe~(3+)离子浓度不应超过5g/L。选取浸出前后试验矿样进行扫描电镜、能谱分析以及XRD衍射分析。溶浸液与铀矿石作用机理初探表明,原矿样表面平整光滑、结构完整、无裂隙凹坑,主要含有K、Ca、Si、Na、Al、O等元素,石英(SiO_2)、钠长石(NaAlSi3O8)、钙长石(CaAl2Si2O8)、斜长石((K,Na)AlSi3O8)、钾长石(KAlSi3O8)等矿物。在溶浸液作用下,矿石表面出现不同程度的腐蚀破坏,元素组分发生明显变化,并生成了造成矿石板结的石膏(CaSO4·2H2O)和黄钾铁钒(KFe_3(SO_4)_2(OH)6)沉淀物。
[Abstract]:Compared with traditional methods, microbial uranium leaching technology has many advantages, such as less investment, less acid consumption, less environmental pollution and simple technological process. In this paper, the influence of different factors on the leaching effect of uranium ore is studied. The leaching law and leaching effect of uranium ore are analyzed from the aspects of spray strength, inoculation amount of bacteria and concentration of iron, and the mechanism of action between leaching solution and uranium ore is preliminarily discussed. The specific research contents and results are as follows: the experimental results show that on the 108th day of leaching, the accumulative leaching rate of uranium is 80.977,81.540.91.400.20% and 25%. The cumulative acid consumption rate is 8.588.4210.4210.4212.1312.1112.1312.1112.1312.1112.1312.1112.1312.1112.1312.1312.1312.1312.1112.1312.1312.1312.1112.1312.1312.1312.1112.1312.1312.1312.1312.1113.275.The cumulative acid consumption rate is 8.580.10.4210.4212.1312.1113.2755.The leaching rate of the slag meter is 82.288.58.35 / 88.357.555.The cumulative acid consumption rate is 8.58510.4210.4212.1312.1112.1113.27. Considering the acid leaching period, the accumulative acid consumption rate, the uranium accumulative leaching rate and the slag leaching rate, the effect of uranium leaching with 15% spray strength is the best. Bacterial inoculation test showed that the concentration of uranium and the leaching rate of uranium increased with the increase of bacterial inoculation, but the concentration of uranium and the rate of leaching of uranium by 30% bacteria began to decrease. Therefore, a moderate increase in bacterial inoculation is beneficial to the leaching of uranium ores. The results of iron concentration test showed that the concentration of uranium and the leaching rate of uranium were lower than 5 g / L Fe ~ (2) and higher than 3 g / L L Fe ~ (2) > 3 g / L Fe ~ (2). The bacteria activity was the best, and the leaching effect was the best. The concentration of uranium and the leaching rate of uranium were similar to that of 5 g / L LFe3. The higher the concentration of Fe3 ions, the lower the activity of bacteria. The Fe ~ (3) ion concentration should not exceed 5 g / L. The samples before and after leaching were selected for SEM, EDS and XRD analysis. The mechanism of interaction between leaching solution and uranium ore shows that the surface of the sample is smooth, the structure is intact and there are no fissure pits. It mainly contains minerals such as K _ (Ca-CaO), Na _ 2O _ 3, Sio _ 2, NaAlSi _ 3O _ 8, CaAl2Si _ 2O _ 8, K _ (AlSi _ 3O _ 8), K _ AlSi _ 3O _ 8 and so on. The results show that: (1) the surface of the sample is smooth, the structure is intact, and there are no fissure pits. The main minerals are quartz (SiO2), albite (NaAlSi3O8), CaAl2Si2O8, plagioclase (Knna) AlSi3O8, potassium feldspar (KAlSi3O8) and so on. Under the action of leaching solution, the surface of the ore was corroded to varying degrees, and the element composition changed obviously. The gypsum (CaSO _ 4 _ 2H _ 2O) and K _ FeS _ 3 (so _ 4) _ 2 (OH) _ 6) precipitates were formed, which resulted in the formation of gypsum (CaSO _ 4 _ 2H _ 2O) and K _ Fe _ 3 (so _ 4) _ 2 (OH) _ 6.
【学位授予单位】:东华理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD958;TD925.5

【参考文献】

相关期刊论文 前10条

1 雷英杰;艾翠玲;张国春;庄肃凯;;微生物浸出技术及其研究进展[J];广州化工;2016年14期

2 冯光志;石玉;舒玉凤;;微生物浸出技术及其在尾矿开发中的应用[J];生物学杂志;2016年01期

3 刘新星;王龙;谢建平;刘媛媛;;低品位氧化铜矿柱浸试验研究[J];矿冶工程;2016年01期

4 张琛;郑红艾;周笑绿;王中宏;吴阳;李炳越;;生物浸出技术的发展及其电化学研究现状[J];金属矿山;2014年12期

5 周义朋;沈照理;何江涛;刘金辉;史维浚;;某砂岩型铀矿床矿石微生物浸出试验[J];有色金属(冶炼部分);2014年10期

6 代春艳;孙占学;王学刚;陈功新;陈剑朝;;某碱性铀矿石微生物柱浸试验[J];有色金属(矿山部分);2014年04期

7 万然;;铁浓度对某铀矿浸铀菌群的影响[J];广东化工;2014年07期

8 焦学然;孙占学;刘思维;陈功新;刘亚洁;李江;;酸度及酸化介质对铀矿石微生物浸出酸化的影响[J];有色金属(冶炼部分);2014年04期

9 李广泽;王洪江;吴爱祥;胡凯建;;生物浸矿技术研究现状[J];湿法冶金;2014年02期

10 黄军荣;李江;郭勤;王学刚;孙占学;;低品位铀矿渣微生物间歇喷淋浸出工艺[J];有色金属(冶炼部分);2013年10期

相关博士学位论文 前3条

1 周闪闪;脉石矿物在微生物浸出黄铜矿体系的溶出特性及机理研究[D];北京科技大学;2015年

2 李啊林;黄铜矿的嗜热菌浸出及过程机理研究[D];北京有色金属研究总院;2012年

3 李e,

本文编号:2112360


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2112360.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d3bee***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com