当前位置:主页 > 科技论文 > 矿业工程论文 >

加卸载围压条件下岩石峰后力学特性试验研究

发布时间:2018-08-11 11:27
【摘要】:岩石的峰后力学特性对充分发挥岩体的承载力以维持地下工程的稳定性、揭示岩体中塑性区的演化发展及岩体工程支护优化设计起着关键作用。因此,研究加卸载围压条件下岩石峰后力学性质对工程设计有着非常重要的意义。本文通过对岩样在残余强度阶段的加卸载围压试验,研究岩石峰后的力学特性,提出了峰后弹性滑移力学机理,并据此建立了数值分析模型,对隧道围岩变形进行数值分析。主要研究内容及结论如下:(1)常规三轴试验中岩石残余强度的大小受峰值强度和围压的影响,在低围压下表现更强的围压敏感性;这是由于低围压下破裂面间只有少量接触,作用力较小,随着围压的增大,接触面逐渐变得规整且面积增大,接触作用增强,应力-应变关系也由脆性跌落向塑性滑移转变;页岩峰值至残余阶段主要发生的是内聚力的丧失过程,而内摩擦角弱化量很小。(2)残余阶段加卸载围压试验中,卸载围压对残余阶段力学特性的影响在多次卸载-多次加载围压、多次卸载-一次加载围压和循环加卸载围压这三种试验方案中具有相同的规律,即在轴向应力处于初始残余阶段限定轴向位移不变,当围压以均匀的速度卸载时,轴向应力也相应地均匀降低;卸载围压至设定值后,轴向应力在施加轴向位移荷载后保持基本稳定,轴向应力-应变关系呈现塑性变形特征。(3)加载围压后,轴向应力-应变曲线可分为三个阶段,第一是在限定轴向位移情况下加载围压时轴向应力随围压增加而增大的轴向应力恢复阶段,第二是稳定围压后施加轴向位移荷载时轴向应力-应变具有与峰前相同的线弹性变形阶段,第三是当轴向应力达到残余应力时产生的弹性滑移变形阶段。(4)残余阶段的力学机理可以简化为弹性岩石块体沿破裂面的摩擦滑移变形。(5)基于岩石残余阶段的弹性滑移作用机理,提出了岩石峰后单结构面的弹性滑移模型,并通过ANSYS的接触单元模拟峰后破裂面间的摩擦滑移作用;模拟了不同围压下三轴压缩试验过程,结果表明模型与实际试验具有较好的拟合性。(6)基于峰后弹性滑移模型,用ANSYS模拟的隧道围岩变形能够很好地反映隧道围岩的变形特性。岩体峰后的沿弱面的滑移变形是隧道围岩变形的主要原因。
[Abstract]:The post-peak mechanical properties of rock play a key role in giving full play to the bearing capacity of rock mass to maintain the stability of underground engineering and to reveal the evolution and development of plastic zone in rock mass and the optimum design of rock mass engineering support. Therefore, it is very important for engineering design to study the post-peak mechanical properties of rock under loading and unloading confining pressure. In this paper, through loading and unloading confining pressure test of rock samples at the stage of residual strength, the mechanical properties of rock after peak are studied, and the mechanism of elastic slip after peak is put forward. Based on this, a numerical analysis model is established to analyze the deformation of surrounding rock in tunnel. The main research contents and conclusions are as follows: (1) in conventional triaxial tests, the residual strength of rock is affected by peak strength and confining pressure, and it is more sensitive to confining pressure under low confining pressure, which is due to the fact that there is only a small amount of contact between fracture surfaces under low confining pressure. With the increase of confining pressure, the contact surface becomes regular and the area increases, the contact action increases, and the stress-strain relationship changes from brittle drop to plastic slip. The loss of cohesion occurs mainly in the peak to residual stage of shale, but the weakening of internal friction angle is very small. (2) in the loading and unloading confining pressure test of residual stage, the influence of unloading confining pressure on the mechanical properties of residual stage is from multiple unload to multiple loading confining pressure. There are the same laws in the three test schemes of multiple unloading-one loading confining pressure and cyclic loading and unloading confining pressure, that is, when the axial stress is at the initial residual stage, the axial displacement is limited to be invariable, and when the confining pressure is unloaded at a uniform speed, After unloading the confining pressure to the set value, the axial stress remained basically stable after the axial displacement load was applied, and the axial stress-strain relationship showed the plastic deformation characteristic. (3) after loading the confining pressure, the axial stress remained basically stable after the axial displacement load was applied. (3) after loading the confining pressure, the axial stress-strain relationship showed plastic deformation characteristics. The axial stress-strain curve can be divided into three stages. The first is the axial stress recovery stage in which the axial stress increases with the increase of the confining pressure when confining pressure is loaded under the condition of limited axial displacement. The second is that the axial stress-strain has the same linear elastic deformation stage as before the peak when the axial displacement load is applied after stabilizing the confining pressure. The third is the elastic slip deformation stage when the axial stress reaches the residual stress. (4) the mechanical mechanism of the residual stage can be simplified as the friction slip deformation of the elastic rock block along the fracture surface. (5) based on the elastic slip mechanism of the residual stage of the rock, The elastic slip model of the single structure plane behind the peak of rock is proposed, and the friction slip between the fracture surfaces after the peak is simulated by the contact element of ANSYS, and the triaxial compression test process under different confining pressures is simulated. The results show that the model fits well with the actual test. (6) based on the post-peak elastic slip model, the deformation of tunnel surrounding rock simulated by ANSYS can well reflect the deformation characteristics of tunnel surrounding rock. The slip deformation along the weak plane behind the rock peak is the main reason of the tunnel surrounding rock deformation.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD315

【相似文献】

相关期刊论文 前10条

1 郭臣业;鲜学福;姜永东;王臣;;砂岩加载试验峰后变形、破坏与应变能特征[J];岩石力学与工程学报;2011年S2期

2 李小琴;李文平;李洪亮;孙如华;;砂岩峰后卸除围压过程的渗透性试验研究[J];工程地质学报;2005年04期

3 王东;王丁;韩小刚;周晓明;;侧向变形控制下的灰岩破坏规律及其峰后本构关系[J];煤炭学报;2010年12期

4 王学滨;;基于梯度塑性理论的岩样峰后变形特征研究[J];岩石力学与工程学报;2004年S1期

5 李文婷;李树忱;冯现大;李术才;袁超;;基于莫尔 库仑准则的岩石峰后应变软化力学行为研究[J];岩石力学与工程学报;2011年07期

6 平洋;李树忱;汪雷;;贯通节理砂岩峰后变形试验研究及其在隧道支护中的应用[J];煤炭学报;2014年04期

7 占小敏;;“峰后”在闽北地区的表现及优质丰产栽培技术[J];中外葡萄与葡萄酒;2006年06期

8 李树忱;汪雷;李术才;韩建新;;不同倾角贯穿节理类岩石试件峰后变形破坏试验研究[J];岩石力学与工程学报;2013年S2期

9 于永江;张春会;王来贵;;基于退化角的岩石峰后应变软化模型[J];煤炭学报;2012年03期

10 刘洋;刘长武;王东;叶定阳;周卓灵;;基于摩擦滑动的峰后断续灰岩力学特性的研究[J];煤炭学报;2014年02期

相关会议论文 前3条

1 王明洋;;分区破裂化是要研究峰后的曲线[A];新观点新学说学术沙龙文集21:深部岩石工程围岩分区破裂化效应[C];2008年

2 张黎明;王在泉;宋全锋;贺俊征;;粉砂岩卸荷破坏全过程的试验研究[A];东北岩石力学与工程分会学术讨论会论文集[C];2005年

3 徐松林;吴文;张华;吴玉山;;大理岩单轴压缩峰前峰后循环特性[A];第五届全国MTS材料试验学术会议论文集[C];2001年

相关博士学位论文 前3条

1 平洋;峰后岩体宏细观破裂过程数值模拟方法及应用研究[D];山东大学;2015年

2 黄耀光;深部破裂围岩锚注浆液渗流扩散机理研究[D];中国矿业大学;2015年

3 韩建新;基于应变软化模型的岩体峰后变形特性和隧洞结构稳定性研究[D];山东大学;2012年

相关硕士学位论文 前9条

1 徐咸辉;峰后碎裂岩体破坏能量转化与纤维喷射混凝土支护特性研究[D];山东大学;2015年

2 吴文杰;岩石常规三轴峰后加卸载变形破坏声发射规律研究[D];重庆大学;2015年

3 李清淼;加卸载围压条件下岩石峰后力学特性试验研究[D];重庆大学;2015年

4 陈秉政;深部硬岩峰后力学参数演化规律研究[D];东北大学;2013年

5 江益辉;冲击荷载作用下岩石峰后损伤破坏特性研究[D];中南大学;2014年

6 李文婷;岩石峰后应变软化本构方程及数值模拟方法研究[D];山东大学;2012年

7 朱雪松;岩石峰后应变软化特性及工程应用[D];内蒙古科技大学;2015年

8 杨飞;基于CT图像砂岩峰后损伤特征研究[D];内蒙古科技大学;2015年

9 刘青灵;考虑岩体峰后承载特性的进路回采力学规律研究[D];中南大学;2013年



本文编号:2176863

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2176863.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5e771***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com