加卸载围压条件下岩石峰后力学特性试验研究
[Abstract]:The post-peak mechanical properties of rock play a key role in giving full play to the bearing capacity of rock mass to maintain the stability of underground engineering and to reveal the evolution and development of plastic zone in rock mass and the optimum design of rock mass engineering support. Therefore, it is very important for engineering design to study the post-peak mechanical properties of rock under loading and unloading confining pressure. In this paper, through loading and unloading confining pressure test of rock samples at the stage of residual strength, the mechanical properties of rock after peak are studied, and the mechanism of elastic slip after peak is put forward. Based on this, a numerical analysis model is established to analyze the deformation of surrounding rock in tunnel. The main research contents and conclusions are as follows: (1) in conventional triaxial tests, the residual strength of rock is affected by peak strength and confining pressure, and it is more sensitive to confining pressure under low confining pressure, which is due to the fact that there is only a small amount of contact between fracture surfaces under low confining pressure. With the increase of confining pressure, the contact surface becomes regular and the area increases, the contact action increases, and the stress-strain relationship changes from brittle drop to plastic slip. The loss of cohesion occurs mainly in the peak to residual stage of shale, but the weakening of internal friction angle is very small. (2) in the loading and unloading confining pressure test of residual stage, the influence of unloading confining pressure on the mechanical properties of residual stage is from multiple unload to multiple loading confining pressure. There are the same laws in the three test schemes of multiple unloading-one loading confining pressure and cyclic loading and unloading confining pressure, that is, when the axial stress is at the initial residual stage, the axial displacement is limited to be invariable, and when the confining pressure is unloaded at a uniform speed, After unloading the confining pressure to the set value, the axial stress remained basically stable after the axial displacement load was applied, and the axial stress-strain relationship showed the plastic deformation characteristic. (3) after loading the confining pressure, the axial stress remained basically stable after the axial displacement load was applied. (3) after loading the confining pressure, the axial stress-strain relationship showed plastic deformation characteristics. The axial stress-strain curve can be divided into three stages. The first is the axial stress recovery stage in which the axial stress increases with the increase of the confining pressure when confining pressure is loaded under the condition of limited axial displacement. The second is that the axial stress-strain has the same linear elastic deformation stage as before the peak when the axial displacement load is applied after stabilizing the confining pressure. The third is the elastic slip deformation stage when the axial stress reaches the residual stress. (4) the mechanical mechanism of the residual stage can be simplified as the friction slip deformation of the elastic rock block along the fracture surface. (5) based on the elastic slip mechanism of the residual stage of the rock, The elastic slip model of the single structure plane behind the peak of rock is proposed, and the friction slip between the fracture surfaces after the peak is simulated by the contact element of ANSYS, and the triaxial compression test process under different confining pressures is simulated. The results show that the model fits well with the actual test. (6) based on the post-peak elastic slip model, the deformation of tunnel surrounding rock simulated by ANSYS can well reflect the deformation characteristics of tunnel surrounding rock. The slip deformation along the weak plane behind the rock peak is the main reason of the tunnel surrounding rock deformation.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD315
【相似文献】
相关期刊论文 前10条
1 郭臣业;鲜学福;姜永东;王臣;;砂岩加载试验峰后变形、破坏与应变能特征[J];岩石力学与工程学报;2011年S2期
2 李小琴;李文平;李洪亮;孙如华;;砂岩峰后卸除围压过程的渗透性试验研究[J];工程地质学报;2005年04期
3 王东;王丁;韩小刚;周晓明;;侧向变形控制下的灰岩破坏规律及其峰后本构关系[J];煤炭学报;2010年12期
4 王学滨;;基于梯度塑性理论的岩样峰后变形特征研究[J];岩石力学与工程学报;2004年S1期
5 李文婷;李树忱;冯现大;李术才;袁超;;基于莫尔 库仑准则的岩石峰后应变软化力学行为研究[J];岩石力学与工程学报;2011年07期
6 平洋;李树忱;汪雷;;贯通节理砂岩峰后变形试验研究及其在隧道支护中的应用[J];煤炭学报;2014年04期
7 占小敏;;“峰后”在闽北地区的表现及优质丰产栽培技术[J];中外葡萄与葡萄酒;2006年06期
8 李树忱;汪雷;李术才;韩建新;;不同倾角贯穿节理类岩石试件峰后变形破坏试验研究[J];岩石力学与工程学报;2013年S2期
9 于永江;张春会;王来贵;;基于退化角的岩石峰后应变软化模型[J];煤炭学报;2012年03期
10 刘洋;刘长武;王东;叶定阳;周卓灵;;基于摩擦滑动的峰后断续灰岩力学特性的研究[J];煤炭学报;2014年02期
相关会议论文 前3条
1 王明洋;;分区破裂化是要研究峰后的曲线[A];新观点新学说学术沙龙文集21:深部岩石工程围岩分区破裂化效应[C];2008年
2 张黎明;王在泉;宋全锋;贺俊征;;粉砂岩卸荷破坏全过程的试验研究[A];东北岩石力学与工程分会学术讨论会论文集[C];2005年
3 徐松林;吴文;张华;吴玉山;;大理岩单轴压缩峰前峰后循环特性[A];第五届全国MTS材料试验学术会议论文集[C];2001年
相关博士学位论文 前3条
1 平洋;峰后岩体宏细观破裂过程数值模拟方法及应用研究[D];山东大学;2015年
2 黄耀光;深部破裂围岩锚注浆液渗流扩散机理研究[D];中国矿业大学;2015年
3 韩建新;基于应变软化模型的岩体峰后变形特性和隧洞结构稳定性研究[D];山东大学;2012年
相关硕士学位论文 前9条
1 徐咸辉;峰后碎裂岩体破坏能量转化与纤维喷射混凝土支护特性研究[D];山东大学;2015年
2 吴文杰;岩石常规三轴峰后加卸载变形破坏声发射规律研究[D];重庆大学;2015年
3 李清淼;加卸载围压条件下岩石峰后力学特性试验研究[D];重庆大学;2015年
4 陈秉政;深部硬岩峰后力学参数演化规律研究[D];东北大学;2013年
5 江益辉;冲击荷载作用下岩石峰后损伤破坏特性研究[D];中南大学;2014年
6 李文婷;岩石峰后应变软化本构方程及数值模拟方法研究[D];山东大学;2012年
7 朱雪松;岩石峰后应变软化特性及工程应用[D];内蒙古科技大学;2015年
8 杨飞;基于CT图像砂岩峰后损伤特征研究[D];内蒙古科技大学;2015年
9 刘青灵;考虑岩体峰后承载特性的进路回采力学规律研究[D];中南大学;2013年
,本文编号:2176863
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2176863.html