基于智能加药的煤泥浮选控制系统研究
[Abstract]:As an important link in the process of coal slime flotation, the accurate addition of flotation agents has a great influence on the flotation effect. At present, due to the lack of high precision flotation variable detection equipment and effective dosing strategy, the dosage of coal slime floatation can only be added by the workers' production experience. This method not only increases the labor intensity of workers, but also results in the instability of ash content of flotation coal due to subjective factors, thus affecting the efficiency of production. In order to solve the above problems, based on the deep analysis of coal slime flotation technology in Zhaolou Coal preparation Plant, this paper studies the slime flotation control system with intelligent dosing technology. The total scheme of using flotation concentrate ash as the main controlled quantity of the system, the amount of flotation reagents added to the pulp preprocessor as the control quantity of the system, the image recognition technology and the expert system as the monitoring means were made. First of all, through the research and analysis of the process of coal slime flotation and the actual production record data, the important process parameters of flotation dosing are established, and the prediction model of floatation dosing based on GRNN neural network is constructed. The parameters of the neural network model are solved by cross-validation search algorithm. Compared with the BP,GA-BP prediction simulation, the superiority of the neural network model in floatation is obtained. Then, on the basis of de-noising processing of foam image, the foam characteristics affecting ash content of clean coal are screened by MIV value evaluation method, and the prediction model of ash content of flotation concentrate coal based on RBF neural network is established. The model parameters are solved by recursive least square method, and its superiority in ash prediction of flotation coal is obtained by comparing with BP network. Thirdly, on the basis of prediction of ash content and feature extraction of foam image, a correction model of flotation dosage is established, which is based on expert system. Finally, on the basis of the above research, the software and hardware models of the system are built, and the simulation of the system is carried out to verify the feasibility of the research.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD94;TD923
【参考文献】
相关期刊论文 前10条
1 郭西进;陈洪伟;陈晓天;刘淼;;基于RBFNN的输送带秤智能容错方法[J];煤炭技术;2015年12期
2 李密;刘振兴;王军;;浮选自动加药系统设计与实现[J];自动化应用;2015年06期
3 刘青;袁玮;王宝;彭良振;;基于GA-BP神经网络的金精矿品位的预测[J];东北大学学报(自然科学版);2015年02期
4 李建印;;基于BP神经网络的装备保障能力评估研究[J];管理评论;2014年12期
5 刘俊峰;;质量流量计在化工装置的应用[J];自动化技术与应用;2014年09期
6 桂卫华;阳春华;徐德刚;卢明;谢永芳;;基于机器视觉的矿物浮选过程监控技术研究进展[J];自动化学报;2013年11期
7 吴浩;罗毅;蔡亮;;基于RBF神经网络的输电线路故障类型识别新方法[J];重庆邮电大学学报(自然科学版);2013年03期
8 赵新华;王光辉;匡亚莉;祝学斌;梁华;;基于SVMR的煤泥浮选智能优化控制系统研究[J];矿山机械;2012年08期
9 宋立业;程英;李志福;;基于BP神经网络的加药控制系统研究[J];计算机测量与控制;2012年02期
10 李海波;郑秀萍;柴天佑;;浮选过程混合智能优化设定控制方法[J];东北大学学报(自然科学版);2012年01期
相关博士学位论文 前2条
1 刘金平;泡沫图像统计建模及其在矿物浮选过程监控中的应用[D];中南大学;2013年
2 牟学民;矿物浮选泡沫图像序列动态特征提取及工业应用[D];中南大学;2012年
相关硕士学位论文 前2条
1 郭智平;煤泥浮选加药控制系统的研究与开发[D];太原理工大学;2016年
2 袁浩凡;基于振动的FRP弧形层合板中分层损伤的无损检测研究[D];广州大学;2016年
,本文编号:2218837
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2218837.html