当前位置:主页 > 科技论文 > 矿业工程论文 >

中锰奥氏体钢矿井水工况的摩擦及腐蚀行为研究

发布时间:2018-09-09 13:35
【摘要】:腐蚀是造成煤矿综采设备失效的主要原因之一。由于煤炭开采环境阴暗、潮湿,井下空气相对湿度常年在90%以上,在交变应力和腐蚀介质的共同作用下,金属的实际腐蚀过程变得十分复杂,影响腐蚀的因素较多。本文选用中锰奥氏体与马氏体耐磨钢为对象,研究了矿井水工况的均匀腐蚀和电化学腐蚀行为,并对滑动和冲击摩擦腐蚀性能进行了探讨,论文取得的主要结论如下:中性水工况下两种钢的腐蚀速率较低,整个均匀腐蚀过程中的腐蚀产物主要为Fe_2O_3、FeSO_4和Fe(HCO_3)_3。对比马氏体钢,奥氏体中锰钢更适用于碱性矿井水的工况环境。奥氏体中锰钢和马氏体耐磨钢均匀腐蚀腐蚀特征由早期的非均匀腐蚀向全面的均匀腐蚀逐渐过渡。非均匀腐蚀特征主要表现为局部(晶界和晶内)的点蚀和晶内组织腐蚀,均匀腐蚀特征则主要表现为较深的点蚀和坑蚀、晶界和晶内的深度的腐蚀沟槽及大量的腐蚀产物等。酸性水工况下两种耐磨钢的开路电位最负,工作电极较参比电极比起来更容易失去电子,腐蚀更易发生。碱性水工况奥氏体中锰钢的开路电位高于马氏体钢,腐蚀趋势低于马氏体钢。三种模拟工况下奥氏体钢都有明显钝化区,酸性工况钝化区较窄,中性和碱性工况钝化区较宽。酸性和碱性工况腐蚀电位负移,腐蚀电流密度增大,腐蚀更易发生。两种耐磨钢的电化学等效电路图可用模拟工况溶液电阻(Rs)和电阻-电容并联(RpCp)的电路串联拟合,且电极中都只发生了一个电极反应。奥氏体钢的阻抗模值在酸性工况下减小较多,容抗弧较小,表面腐蚀较为严重。马氏体钢在酸性工况下的容抗弧最小,腐蚀也最为严重。三种矿井水条件下,奥氏体中锰钢的冲击摩擦腐蚀和滑动摩擦腐蚀磨损率均低于马氏体耐磨钢,耐腐蚀磨损性能好于马氏体耐磨钢。三种矿井水的腐蚀磨损均处于以摩擦为主导的摩擦腐蚀体系,由于磨损实验时间较短,摩擦对腐蚀的加速作用不明显。基体奥氏体钢的腐蚀磨损层的硬度得到明显提高,三种矿井水工况下奥氏体钢的亚表层50μm处的显微硬度达到510 HV,平均提高了2.1倍,明显高于马氏体耐磨钢的硬度,磨损硬化层深度接近500μm。三种矿井水条件下,两种耐磨钢有着相同的磨损机理,都表现为犁沟磨损和疲劳剥落磨损。对比三种矿井水之间的冲击摩擦腐蚀磨损率,酸性矿井水略高于中性和碱性工况。冲击腐蚀磨损层奥氏体钢的硬度得到明显提高,三种矿井水工况下奥氏体钢的亚表层50μm处的显微硬度达到520 HV,平均提高了2.2倍,明显高于马氏体耐磨钢的硬度,奥氏体中锰钢表现出良好的冲击加工硬化性能。三种矿井水工况的冲击腐蚀磨损层均出现了形变诱发马氏体相变,为板条位错型马氏体组织。中锰钢强化机理分析表明,形变诱发马氏体相变强化、位错和孪晶强化是其加工硬化主要机制,属于复合强化机理。三种矿井水工况的冲击腐蚀摩擦均属于以摩擦为主导的摩擦腐蚀体系,凿削磨损和犁沟切削磨损是两种钢冲击腐蚀磨损的主要磨损机制。
[Abstract]:Corrosion is one of the main reasons for failure of fully mechanized mining equipment in coal mines.Because of the dark and humid coal mining environment,the relative humidity of the underground air is above 90% all the year round.Under the combined action of alternating stress and corrosive medium,the actual corrosion process of metals becomes very complicated and there are many factors affecting corrosion.Medium manganese austenite and horse are selected in this paper. The uniform corrosion and electrochemical corrosion behavior of the wear-resistant steel in mine water were studied, and the sliding and impact friction corrosion properties were discussed. The main conclusions of the paper are as follows: the corrosion rate of the two steels in neutral water is low, and the corrosion products in the whole uniform corrosion process are mainly Fe_2O_3, FeSO_4 and Fe (H). CO_3)_3. Compared with martensitic steels, austenitic medium manganese steels are more suitable for working conditions of alkaline mine water. The uniform corrosion characteristics of Austenitic Medium Manganese Steels and martensitic wear-resistant steels gradually transit from early inhomogeneous corrosion to full-scale homogeneous corrosion. Corrosion and uniform corrosion are characterized by deep pitting and pitting corrosion, deep corrosion grooves at grain boundaries and in grains, and a large number of corrosion products. The open-circuit potential of steel is higher than that of martensitic steel, and the corrosion trend is lower than that of martensitic steel. The passivation zone of austenitic steel is narrow in acidic condition, wider in neutral and alkaline condition. The corrosion potential shifts negatively in acidic and alkaline condition, the corrosion current density increases, and the corrosion is easy to occur. The equivalent circuit diagram can be fitted in series with the solution resistance (Rs) and the resistance-capacitance parallel connection (RpCp) under the simulated working condition, and only one electrode reaction takes place in the electrode. The wear rate of impact friction corrosion and sliding friction corrosion corrosion of Austenitic Medium Manganese Steel is lower than that of martensitic wear-resistant steel under three kinds of mine water conditions, and its corrosion resistance is better than that of martensitic wear-resistant steel. The hardness of the corrosive wear layer of the base austenitic steel has been obviously improved. The microhardness of the 50 micron sub-surface layer of the austenitic steel under three mine water conditions is 510 HV, which is 2.1 times higher than that of the martensitic wear-resistant steel. The depth of the wear hardening layer is close to 500 micron. The wear mechanisms of the two kinds of wear-resistant steels are the same, both of which are plough wear and fatigue spalling wear. Compared with the impact friction corrosion corrosion wear rate of the three kinds of mine water, the acid mine water is slightly higher than the neutral and alkaline conditions. The hardness of the impact corrosion wear layer of the austenitic steel is obviously improved, and the austenitic steel under the three kinds of mine water conditions. The microhardness at 50 micron of the subsurface layer is 520 HV, which is 2.2 times higher than that of the martensitic wear resistant steel. The Austenitic Medium Manganese Steel exhibits good impact working hardening property. Deformation-induced martensitic transformation occurs in the impact corrosive wear layer of the three kinds of mine water, and it is lath dislocation martensite structure. The analysis of strengthening mechanism shows that deformation-induced martensitic transformation strengthening, dislocation and twin strengthening are the main mechanisms of work hardening and belong to compound strengthening mechanism. Wear mechanism.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD407

【参考文献】

相关期刊论文 前10条

1 马峰;陈华辉;潘俊艳;;煤矿综采设备的腐蚀机理及其防腐蚀措施[J];煤矿机械;2015年07期

2 张湘黔;陈朝轶;杨京;;低合金钢腐蚀研究现状[J];广州化工;2014年22期

3 张彩霞;王政科;;刮板机高强耐磨钢堆焊工艺[J];电焊机;2014年10期

4 张宝峰;;矿井井筒装备腐蚀机理和防护[J];东方企业文化;2014年13期

5 李楠;时捷;王存宇;陈为亮;惠卫军;曹文全;;冷轧中锰钢退火过程中硬度及组织的演化[J];钢铁;2012年09期

6 赵杰;徐海峰;时捷;李箭;蒲健;曹文全;;细晶强化和位错强化对中锰马氏体钢的强化作用[J];钢铁;2012年08期

7 伊成龙;张乐福;;核电厂海水循环泵用两种耐腐蚀涂层[J];腐蚀与防护;2012年07期

8 纪少南;欧雪梅;华建锋;;浅谈洗选设备的腐蚀研究及防腐保护[J];矿山机械;2012年07期

9 ;Microstructure and Mechanical Properties of High Manganese TRIP Steel[J];Journal of Iron and Steel Research(International);2012年04期

10 李楠;时捷;陈为亮;曹文全;;碳含量对冷轧中锰钢双相区退火组织和力学性能的影响[J];热加工工艺;2012年02期

相关硕士学位论文 前3条

1 徐文欢;冷轧中锰钢的成形性能研究[D];昆明理工大学;2012年

2 鲍艳东;新型碲镍铬合金的耐腐蚀性能研究[D];兰州理工大学;2011年

3 刘品强;刮板输送机中部槽的强度分析及优化[D];河北工业大学;2007年



本文编号:2232533

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2232533.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8a752***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com