当前位置:主页 > 科技论文 > 矿业工程论文 >

溶剂溶解盐湖低品位固体钾盐的动力学研究

发布时间:2018-09-09 14:18
【摘要】:低品位钾矿溶浸开采时,存在资源浪费严重和溶浸通道被阻断的问题,为了使资源得到充分高效的利用,需改进开采方式及工艺条件。通过单因素试验和正交试验进行溶浸开采工艺条件的研究,考察了溶矿固液比、溶剂中Na Cl的质量分数和Mg Cl2的质量分数三个影响因素,确定最佳工艺条件为:溶矿固液比1:0.5;溶剂配比为氯化钠含量为其饱和度的50%(Na Cl的质量分数为13.24%);氯化镁的质量分数为3%;溶解时间为72h。该条件下溶矿后矿液中KCl的含量大于1.2%,且盐矿骨架不坍塌,溶浸通道畅通,符合工艺要求。在上述实验结论基础上研究马海盐矿中K+、Na+溶解性能和溶解规律,分别选取质量分数为13.24%(即饱和度为50%)的Na Cl溶液和Na Cl+Mg Cl2混合溶液(Na Cl、Mg Cl2质量分数分别为13.24%、3%)为溶剂进行试验,并与水作比较,从而得出其在不同溶剂中的溶解动力学方程。测得数据绘制离子c-t图,进行非线性拟合后得到溶解动力学曲线;再用龙格-库塔微分方程组和单纯形优化法拟合求解stumm模型中的K、n两个参数,程序由matlab编写,最终确定离子的溶解动力学方程并得出不同溶剂中K+、Na+的溶解规律:溶剂中加入Na Cl时,矿液中K+的溶解速率明显增大,且矿液中Na+的溶解速率大幅度减小;再引入Mg2+,K+的溶解速率明显增大,溶解速率常数K由0.1126增大到0.8749,且矿液中Na+的溶解速率常数K也保持在10-10级水平。
[Abstract]:In order to make full and efficient utilization of low grade potassium ore, there are some problems such as serious waste of resources and blocking of leaching channel. In order to make full use of the resource, the mining method and technological conditions should be improved. Through single factor test and orthogonal test to study the technological conditions of leaching and mining, three factors affecting the ratio of solute to liquid, the mass fraction of Na Cl in solvent and the mass fraction of Mg Cl2 were investigated. The optimum technological conditions are as follows: the ratio of solution to solid to liquid is 1: 0.5; the ratio of solvent to sodium chloride is 50% (Na Cl with its saturation is 13.24%); the mass fraction of magnesium chloride is 3%; and the dissolution time is 72 h. Under this condition, the content of KCl in ore solution after ore dissolution is more than 1.2, and the skeleton of salt ore does not collapse, and the leaching channel is open, which conforms to the technological requirements. On the basis of the above experimental conclusions, the solubility and dissolution law of K ~ (2 +) Na in Mahai Salt Mine are studied. Na Cl solution with 13.24% mass fraction (i.e. 50% saturation) and Na Cl Mg Cl2 mixed solution (13.24% Na Cl,Mg Cl2 mass fraction) were chosen as solvents, and compared with water, their dissolution kinetics equations in different solvents were obtained. The ion c-t diagram was drawn from the measured data and the dissolution kinetics curve was obtained after nonlinear fitting, and then the Runge-Kutta differential equation group and simplex optimization method were used to fit and solve the two parameters in the stumm model. The program was written by matlab. Finally, the dissolution kinetics equation of ions was determined and the dissolution law of K ~ (2 +) Na in different solvents was obtained. When Na Cl was added into the solution, the dissolution rate of K in ore solution increased obviously, and the dissolution rate of Na in ore solution decreased significantly. The dissolution rate of Mg2 + K increases obviously, the dissolution rate constant K increases from 0.1126 to 0.8749, and the dissolution rate constant K of Na in ore solution is kept at 10-10 level.
【学位授予单位】:青海大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD871.1

【相似文献】

相关期刊论文 前10条

1 ;2甲基-2羟基丙腈水溶液中金的溶解动力学研究[J];国外金属矿选矿;1966年06期

2 陈肇友;固体溶解动力学及其在耐火材料中的应用[J];硅酸盐学报;1983年04期

3 林世英;刘金龙;;酸性含乙腈的硫酸铜水溶液中金属铜溶解动力学的研究[J];中南矿冶学院学报;1983年03期

4 В.Н.Еременко;邵秀兰;;钛在铝熔体中的溶解动力学[J];轻金属;1983年06期

5 张征林,舒余德,蒋汉瀛;硫酸盐体系中硫化镍阳极电化学溶解动力学[J];有色金属;1984年03期

6 李远洲;范鹏;沈新民;黄永兴;张萍;;固体石灰在转炉渣中的溶解动力学初步研究[J];钢铁;1989年11期

7 邢卫国,钟竹前,梅光贵;黄铜矿溶解动力学研究[J];有色金属(冶炼部分);1990年05期

8 彭金辉,刘纯鹏;微波辐照下硫化铅矿常压溶解动力学[J];有色金属;1993年01期

9 侯月明;崔振昂;;流动热水介质下方解石溶解动力学数值模拟[J];天然气技术;2010年06期

10 祁永唐,,夏树屏,赵俊沛,李青风;盐类溶解动力学多参数自动跟踪系统[J];计算机与应用化学;1995年01期

相关博士学位论文 前1条

1 李德先;表生条件下铊矿物的氧化溶解动力学及其反应性迁移实验研究[D];中国科学院研究生院(地球化学研究所);2005年

相关硕士学位论文 前5条

1 姜虹;溶剂溶解盐湖低品位固体钾盐的动力学研究[D];青海大学;2015年

2 张寒悦;大石桥菱镁矿在乙酸中的溶解动力学研究[D];东北大学;2011年

3 徐伟;高温高压流动条件下灰岩溶解实验研究[D];中国地质大学(北京);2006年

4 王炜;四川盆地和塔里木盆地典型碳酸盐岩储层的溶解动力学实验与储层评价研究[D];中国地质大学;2011年

5 周雪娇;V-S-H_2O系E-pH图及V_2O_3溶解动力学研究[D];昆明理工大学;2010年



本文编号:2232631

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2232631.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a7b10***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com