基于极限学习机的采煤机记忆截割调高控制算法研究
[Abstract]:Automatic height adjustment of shearer is one of the key technologies to realize less humanization and dehumanization of shearer working face. The automatic height control of shearer has important practical significance in improving the reliability of coal mining system, prolonging the life of equipment, improving production efficiency and ensuring production safety. The main work of this paper is as follows: by analyzing the structure and working principle of shearer, combining with the memory cutting system of shearer, the paper studies the control algorithm of shearer's memory cutting height based on extreme learning machine, and the main work is as follows: by analyzing the structure and working principle of shearer, combining with the research of shearer's memory cutting system, Then, the acquisition parameters and sampling period of memory cutting are determined. Considering the existing coal mining technology, the manual demonstration tool path planning model is established, and the advantages and disadvantages of particle swarm optimization algorithm and genetic algorithm are analyzed. The error analysis of the planning path shows that the hybrid optimization algorithm can meet the needs of the shearer. The traditional neural network algorithm and a new single hidden layer feedforward neural network algorithm, the ultimate learning machine, are studied in detail. The results show that the ultimate learning machine algorithm has more advantages in computing speed, calculation accuracy and generalization ability. Through the analysis of the hydraulic servo height adjusting system of the shearer, aiming at the nonlinear and delay characteristics of the height adjusting system of the shearer, this paper designs the PID control strategy based on the ultimate learning machine, and uses Matlab/Simulink software to track and control the cutting path. The error curve is given. Through the analysis of simulation results and tracking accuracy, it is shown that the PID control of the ultimate learning machine can be applied to the nonlinear and delayed height adjustment system of the shearer, which can effectively improve the precision of tracking the track, and has a profound influence on the realization of the unattended coal mining face.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD632.1;TP18
【相似文献】
相关期刊论文 前10条
1 杨霞;丁保华;龚娴娴;;矮身掘进机截割部设计[J];煤矿机械;2012年07期
2 齐占波;穆松柏;高顺武;;掘进机截割部的设计研究[J];煤矿机械;2013年12期
3 涂林鹏;王转兰;包文礼;;纵轴式掘进机截割方法、路线与受力分析[J];科技资讯;2011年15期
4 陈洪月;毛君;宋宝新;姚丽明;吴宏刚;;掘进机截割部振动特性分析与仿真[J];微计算机信息;2011年09期
5 龚海滨;魏成刚;胡方海;常龙;;掘进机截割部轴承损坏和漏油的原因分析[J];煤矿机械;2012年06期
6 牛晓军;;掘进机自动化截割技术的研究[J];科技与企业;2012年22期
7 屠春霖;宋志强;;横轴式掘进机截割机构的振动分析[J];建筑机械化;2013年09期
8 黄向阳;闫炳雷;杨文林;;掘进机自适应截割技术研究[J];煤矿机械;2013年10期
9 王焱金;季清华;白雪峰;廉自生;;掘进机截割部液压系统分析[J];机床与液压;2014年01期
10 陶峥;;采掘机械截割部出厂检验加载方案的研讨[J];煤矿机械;2006年09期
相关会议论文 前3条
1 张建广;;悬臂式掘进机自适应截割智能控制策略研究[A];第24届全国煤矿自动化与信息化学术会议暨第6届中国煤矿信息化与自动化高层论坛论文集[C];2014年
2 王洪俊;;关于采煤机截割状态信息的融合和数据分析的控制方法[A];第23届全国煤矿自动化与信息化学术会议暨第5届中国煤矿信息化与自动化高层论坛论文集[C];2013年
3 刘春生;;采煤机牵引功率与截割功率的匹配关系[A];中国煤炭新型工业化之路——安全、高效的集约化生产技术与装备研讨会论文集[C];2005年
相关重要报纸文章 前2条
1 周后勤邋向良忠;同华煤矿优化采机截割部 年节约资金20万[N];经理日报;2008年
2 李勇;渝阳矿成功改进割煤机截割部[N];经理日报;2008年
相关博士学位论文 前10条
1 罗晨旭;滚筒采煤机开采含煤岩界面煤层截割特性研究[D];中国矿业大学;2015年
2 钱沛云;采煤机截割传动系统故障诊断及可靠性分析[D];中国矿业大学;2015年
3 黄建农;EBH300A型煤矿横轴掘进机截割部结构动态特性研究[D];中国矿业大学(北京);2016年
4 田R,
本文编号:2301517
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2301517.html