当前位置:主页 > 科技论文 > 矿业工程论文 >

自流型矿渣基尾砂充填材料的研究

发布时间:2018-11-22 20:45
【摘要】:某矿山利用分级尾砂作为集料、外购胶结粉料制成灰砂比为1:10、固体浓度为68%的分级尾砂胶结充填料浆进行自流井下充填,存在充填材料凝结慢、早强低、充填浓度低及成本高等问题,亟需对充填材料配方进行优化。本文以矿渣作为充填材料胶结粉料的主要基材,利用单因素法分别研究了水泥、半水石膏、二水石膏、石灰用于矿渣基尾砂充填材料中的优缺点:单掺水泥激发矿渣基尾砂充填材料凝结时间长、各龄期强度都较低,不满足充填要求,需要添加其他组分复合激发矿渣;添加半水石膏可缩短凝结时间,提高接顶率,但会降低料浆流动性能和后期强度;添加二水石膏会提高早期强度,但后期强度增长较小;添加石灰能提高充填材料后期强度,但会延长凝结时间。因此,需要将上述几种激发剂复合使用以开发性能较优的自流型矿渣基尾砂充填材料。在单因素试验基础上,固定水泥掺量为15%,选取石膏掺量、半水石膏与二水石膏比例、石灰掺量三个因素,进行正交试验得到综合性能较优的矿渣基尾砂充填材料胶结粉料配比。在正交试验基础上,仅改变水泥与石膏的掺量优化正交最优配,结果发现矿渣基尾砂充填材料中不添加水泥是可行的,但早期强度受影响。因此研究在不添加水泥的矿渣基尾砂充填材料中分别掺加氢氧化钠、硅酸钠、硫酸钠及硫酸铝化学激发剂来提高强度,结果表明添加硫酸铝1.0%时效果最佳。得到的无水泥矿渣基尾砂充填材料胶结粉料的配比为:矿渣71.0%、半水石膏8.3%、二水石膏16.7%、石灰3.0%、硫酸铝1.0%,利用此配方配制的尾砂充填材料较原矿山尾砂充填材料工作性能得到明显的改善,终凝时间提前19.4%;3d、7d、28d强度分别提高32.1%、12.9%、16.3%。将无水泥矿渣基尾砂充填料浆浓度从68%提高到72%,分别研究了萘系高效减水剂(FDN)、氨基高效减水剂(A S F)及聚羧酸高效减水剂(PC)对其性能影响,研究表明:适当掺量的减水剂可增加流动度,在掺FDN0.7%、ASF0.27%、PC0.38%时可以满足72%浓度料浆自流充填;减水剂的加入增加了泌水率,延长了终凝时间,其中添加A SF的不利作用最小;FDN使3 d强度降低,ASF及PC在一定掺量范围内可增加3d强度,随龄期增长,三种减水剂对后期强度均有增加作用。综合来看,在无水泥矿渣基充填材料中使用0.27%的ASF性能最优。确定的自流型矿渣基尾砂充填材料配比为:利用无水泥矿渣基胶结粉料,外掺0.27%的ASF,灰砂比1:10,固体浓度72%。比原矿山充填材料浓度同比提高5.9%,泌水率同比减小30.1%,凝结时间提前19.4%,3d、7d及28d强度分别提高58.9%、39.5%及47.3%。利用XRD、SEM对无水泥矿渣基尾砂充填材料的微观形貌进行分析,结果表明:其主导水化产物为水化硅酸钙以及针棒状的钙矾石品体,这些水化产物或包裹在尾砂颗粒表面,或填充在尾砂颗粒之间,互相之间穿插、交联,使充填体强度增加。
[Abstract]:In a mine, graded tailings are used as aggregates, cemented powder is purchased, and grain-sand ratio is 1: 10 and solid concentration is 68%, which is used for filling under self-flowing well. There is slow condensation and low early strength of filling material. Due to the low concentration and high cost, it is necessary to optimize the filling material formula. In this paper, slag is used as the main base material for cementing powder of filling material. The cement, hemihydrate gypsum and dihydrate gypsum are studied by single factor method. The advantages and disadvantages of lime used in slag based tailings filling material are as follows: only cement is added to stimulate slag base tailings filling material, the setting time is long, and the strength of each age is lower, which does not meet the requirements of filling, so it is necessary to add other components to stimulate slag; The addition of gypsum hemihydrate can shorten the setting time and increase the topping rate, but it will reduce the fluidity of slurry and the later strength, and the addition of gypsum dihydrate can increase the early strength, but the later strength will increase slightly. The addition of lime can increase the later strength of the filling material, but it will prolong the setting time. Therefore, it is necessary to combine these activators to develop self-flowing tailings filling materials with better performance. On the basis of single factor test, fixed cement content is 15, gypsum content, ratio of hemihydrate gypsum to dihydrate gypsum, lime content are selected. The cemented powder ratio of slag based tailings filling material was obtained by orthogonal test. On the basis of orthogonal test, the orthogonal optimum combination of cement and gypsum is optimized only by changing the content of cement and gypsum. The results show that it is feasible not to add cement to the slag based tailings filling material, but the early strength is affected. Therefore, the strength was improved by adding sodium hydroxide, sodium silicate, sodium sulfate and aluminum sulfate in the slag based tailings filling material without cement. The results show that the best effect is when adding aluminum sulfate 1.0. The ratio of cemented powder obtained from cementless slag based tailings filling material is as follows: slag 71.0, hemihydrate gypsum 8.3, gypsum dihydrate 16.775, lime 3.0, aluminum sulfate 1.0. The working performance of the tailings filling material prepared by this formula is obviously improved than that of the original mine tailings filling material, and the final setting time is 19.443% earlier than that of the original mine tailings filling material. The intensity was increased by 32.1and 12.9for 28d, respectively. The concentration of cement free slag based tailings filling slurry was increased from 68% to 72%. The effects of naphthalene superplasticizer (FDN), amino superplasticizer (A S F) and polycarboxylic acid superplasticizer (PC) on their properties were studied respectively. The results show that the flow degree can be increased by adding water reducer with proper amount, and the slurry filling with 72% concentration can be satisfied when FDN0.7%,ASF0.27%,PC0.38% is added. The addition of superplasticizer increased the bleeding rate and prolonged the final coagulation time, and the adverse effect of adding A SF was the least. FDN decreased the strength of 3 days, ASF and PC increased the strength of 3 days in a certain range, and the three water reducers increased the strength of the later stage with the increase of age. In a word, 0.27% ASF is the best one in cement free slag based filling material. The ratio of self-flowing slag based tailings filling material is determined as follows: using cementless slag based cemented powder, adding 0.27% ASF, ash to sand ratio of 1: 10, solid concentration 72. Compared with the original mine, the concentration of filling material was increased by 5.9%, the bleeding rate was decreased by 30.1%, and the setting time was increased by 58.9% and 47.3%, respectively, and the setting time was increased by 19.4d ~ 3d ~ 7d and 28d, respectively. The microstructure of cementless slag based tailings filling material was analyzed by XRD,SEM. The results showed that the main hydration products were calcium silicate hydrate and ettringite, which were encapsulated on the surface of tailings. Or filling between tailing particles, intercalation, cross-linking, so as to increase the strength of the filling body.
【学位授予单位】:西安建筑科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TD853.34

【相似文献】

相关期刊论文 前10条

1 肖承汉;提高φ2.2m×7.5m矿渣磨产量和细度的措施[J];水泥工程;2003年06期

2 胡宏刚;黄拥军;;浅谈球磨机改造成超细矿渣磨[J];四川水泥;2006年05期

3 林振荣;张程博;杨友全;;掺加矿渣的土聚水泥的研究[J];21世纪建筑材料;2009年05期

4 王樾;张伟;;矿渣的活性激发剂[J];江苏建材;2009年04期

5 侯磊;李金洪;王浩林;;矿渣磷酸镁水泥的力学性能和水化机理[J];岩石矿物学杂志;2011年04期

6 贾青;耿辉;;浅谈工业废弃物矿渣在国内外应用的研究现状[J];科技资讯;2011年20期

7 谭玉春;矿渣活化技术[J];建材工业信息;1994年04期

8 吴承祯,刘淼,吴学权,陈键;磨细矿渣对高性能混凝土性能的影响囿1掺加磨细矿渣的砂浆试验[J];南京化工大学学报(自然科学版);1999年05期

9 丁铸,张德成,贾元学,孙启民,吴乃民;用矿渣制备调粒水泥的研究[J];山东建材学院学报;1999年01期

10 路阳;李根;谢雪科;何小芳;曹新鑫;;矿渣对水泥水化影响的研究进展[J];硅酸盐通报;2013年12期

相关会议论文 前10条

1 兰明章;王晓芳;;磨细矿渣的加工和应用[A];中国首届商品粉煤灰及磨细矿渣加工与应用技术交流大会论文集[C];2003年

2 赵三银;余其俊;乔飞;黄家琪;殷素红;文梓芸;古国榜;;碱激发碳酸盐矿-矿渣胶凝材料复合作用及其机理的研究[A];第九届全国水泥和混凝土化学及应用技术会议论文汇编(上卷)[C];2005年

3 胡胜哠;李秀萍;;矿渣高掺量制造矿渣硅酸盐水泥的探讨[A];华北地区硅酸盐学会第八届学术技术交流会论文集[C];2005年

4 王建福;杨全兵;;矿渣对净浆早期开裂的影响[A];中国硅酸盐学会混凝土水泥制品分会第七届理事会议暨学术交流大会论文集[C];2005年

5 孙家瑛;黄成华;;矿渣钢渣复合超量替代水泥高性能混凝土性能研究[A];高性能混凝土的研究与应用——第五届全国高性能混凝土学术交流会论文[C];2004年

6 尹超男;芦令超;王守德;李贵强;;矿渣对阿利特-硫铝酸钡钙水泥水化及硬化浆体孔结构的影响[A];中国硅酸盐学会水泥分会首届学术年会论文集[C];2009年

7 罗亚凤;弓子成;丁庆军;朱玉雪;苗强;;温度对高掺量矿渣的水泥水化放热性能的影响[A];2013年混凝土与水泥制品学术讨论会论文集[C];2013年

8 任云鹏;张维鹏;卢崇劭;;MLK系列矿渣立磨开发[A];2009全国水泥立磨技术和装备研讨会文集[C];2009年

9 张同生;余其俊;韦江雄;宫晨琛;张平平;;粒化高炉矿渣在不同环境中的水化进程研究[A];中国硅酸盐学会水泥分会首届学术年会论文集[C];2009年

10 刘晨;颜碧兰;王昕;江丽珍;肖忠明;;矿渣掺量对水泥抗冻性的影响[A];第十届全国水泥和混凝土化学及应用技术会议论文摘要集[C];2007年

相关重要报纸文章 前3条

1 山东宏艺科技有限公司 陈新中;矿渣与熟料分别粉磨的意义[N];中国建材报;2009年

2 驻山东记者张运科 通讯员陈砚生;山东规模化高效利用矿渣资源带动水泥钢铁行业发展[N];中国建材报;2010年

3 王扣华;矿渣水泥粉磨技术探讨[N];中国建材报;2005年

相关博士学位论文 前4条

1 张慧莉;矿渣聚丙烯纤维混凝土性能研究[D];西北农林科技大学;2010年

2 董刚;粉煤灰和矿渣在水泥浆体中的反应程度研究[D];中国建筑材料科学研究总院;2008年

3 刘仍光;水泥—矿渣复合胶凝材料的水化机理与长期性能[D];清华大学;2013年

4 代奎;矿渣粉煤灰混合胶凝体系研究[D];大庆石油学院;2009年

相关硕士学位论文 前10条

1 白云志;碱激发矿渣的力学性能以及与微观表征的相关性研究[D];青岛理工大学;2016年

2 余健;钙溶蚀条件下矿渣-水泥基材料耐久性退化过程试验与分析研究[D];南京理工大学;2016年

3 钟琪;热活化煤矸石—矿渣—粉煤灰地质聚合物性能研究[D];辽宁工程技术大学;2013年

4 王宁;矿渣—水泥复合胶凝体系低温水化特性研究[D];沈阳建筑大学;2014年

5 蔡梦茜;自流型矿渣基尾砂充填材料的研究[D];西安建筑科技大学;2015年

6 郭丽萍;大掺量磨细矿渣高性能砼疲劳性能研究与疲劳方程的建立[D];东南大学;2005年

7 夏婧;碱矿渣混凝土配合比设计研究[D];重庆大学;2013年

8 赵鹏;矿渣—水泥体系颗粒群特征及其早期性能研究[D];西安建筑科技大学;2006年

9 程刚;矿渣免蒸砖的研究[D];武汉理工大学;2011年

10 栗静静;磷矿渣掺合料对混凝土性能影响的研究[D];重庆大学;2007年



本文编号:2350539

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2350539.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户351a9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com