地表移动变形随煤层倾角及地表坡度变化规律的数值模拟分析
[Abstract]:As an important energy source, coal plays a vital role in industrial development. However, a series of geological disasters, ecological environment and other hidden dangers will occur in the process of coal mining. The damage caused by surface movement caused by coal mining is especially serious, such as groundwater pollution depletion, surface cracking, road collapse and so on. There are many factors that affect the law of surface movement and deformation caused by coal mining. This paper analyzes the two aspects of coal seam inclination and surface slope in order to find its influence law in the process of surface movement and deformation. In order to better analyze the law of moving deformation transfer along the rock stratum, this paper summarizes the basic theory of surface movement and deformation and the index of surface movement deformation, which is based on the topographic, geological and mining conditions of 23103 face in a certain mine in Shanxi Province. The surface slope is 0 ~ 0, corresponding to the coal seam dip angle 0 ~ (6) ~ (12) ~ (th); The slope of the coal seam is 6o, corresponding to the slope of the earth's surface, and the slope of the surface and the angle of the coal seam are 6 / 12? Different FLAC~ (3D) geological body models were constructed and analyzed from three aspects: towards main section subsidence, inclined main section subsidence and horizontal movement, and 7 times of coal seam excavation (50 m each time) were set up to study the dynamic process of surface movement and deformation. The following conclusions are drawn: 1. The influence of coal seam inclination on surface movement: (1) during the second excavation (50 ~ 100m), the subsidence and horizontal movement began to spread to the surface, and with the development of mining, the maximum subsidence and horizontal movement gradually increased; (2) the inclined angle of coal seam is 12? When the range increases, the cloud map of the main section tends to be symmetrical and multi-layer arch shape, the symmetry of the main section sinking and the horizontal moving cloud map becomes worse, the influence range is shifted up the mountain direction, but the maximum subsidence value is shifted downhill direction. (3) when the inclined angle of coal seam increases (0?) At the same excavation stage, the maximum subsidence value of the main section decreased, and the horizontal movement of the main section tended to decrease in the uphill direction and increase in the downhill direction. 2. The influence of surface slope on surface movement: (1) the increase of surface slope (6 ~ 15?) At the same time, the shape of the sinking cloud map along the main section is the same, and it is a symmetrical arch with multi-layer distribution. At the same time, compared with the downhill direction, the influence area of the upward slope direction has the tendency of increasing gradually, but the maximum horizontal movement value of the upward slope direction is smaller than that of the uphill slope direction. (2) the increase of surface slope (6 ~ 15?) At the same excavation stage, the maximum subsidence value and the maximum horizontal movement value of the main section have a decreasing trend. 3. Comprehensive influence of Surface Slope and Coal seam inclination on Surface Movement: (1) increase of Coal seam inclination and Surface Slope (0 / 12?) The maximum subsidence value of the main section decreases during the first three excavations, and increases during the latter three excavations. (2) with the inclination of the coal seam and the slope of the surface, the maximum is shifted to the uphill direction. (2) with the inclination of the coal seam and the slope of the surface at 0? To twelve? When the interval increases gradually, the symmetry of the submergence cloud map of the main section tends to be worse and worse, and the migration is more and more uphill. The maximum value of horizontal movement on the main section is the second in the uphill direction, decreasing in the third excavation, and increasing in the latter three excavations, and increasing gradually in the lower upper direction from the second to the sixth excavation.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TD325
【相似文献】
相关期刊论文 前10条
1 杨树贵;;东欢坨煤矿地表移动参数的确定[J];矿山测量;2011年02期
2 何万龙;;开采引起的山区地表移动与变形预计[J];煤炭科学技术;1983年06期
3 郝庆旺;;地表移动计算中运用迭加原理的几个问题[J];矿山测量;1984年04期
4 李冰;关于地表移动的时间过程[J];长沙矿山研究院季刊;1986年01期
5 张华兴;仲维林;李增琪;;地表移动的映射计算方法[J];煤炭学报;1986年04期
6 李清华;;第四届国际地表移动及结构会议[J];矿山测量;1991年03期
7 栾元重;矿山地表移动的正算与反算[J];有色金属;1998年02期
8 戴华阳,翟厥成,胡友健;山区地表移动的相似模拟实验研究[J];岩石力学与工程学报;2000年04期
9 王广金;地表移动和铁路变形的观测分析[J];江苏煤炭;2000年01期
10 戴华阳,王金庄,崔继宪,郭增长;地表移动与变形极值问题综合评述[J];矿山测量;2000年02期
相关会议论文 前10条
1 徐嘉谟;;从位移矢量特征来判断地表移动原因的方法与实例[A];全国第三次工程地质大会论文选集(下卷)[C];1988年
2 汤伏全;;渭北矿区地表移动概率积分预计模型[A];全国开采沉陷规律与“三下”采煤学术会议论文集[C];2005年
3 匡忠祥;宋卫东;;地下金属矿山地表移动变形预测三维数值模拟研究[A];2005年全国金属矿山采矿学术研讨与技术交流会论文集[C];2005年
4 张广伟;魏耀军;朱强;;地表移动时间的计算方法研究[A];全国“三下”采煤学术会议论文集[C];2012年
5 蒋斌松;;开挖倾斜煤层引起的地表移动计算[A];水电与矿业工程中的岩石力学问题——中国北方岩石力学与工程应用学术会议文集[C];1991年
6 杨树贵;;地表移动参数的确定及应用[A];2010全国“三下”采煤与土地复垦学术会议论文集[C];2010年
7 潘文元;丁龙生;;水体下开采地表移动变形特征[A];赣闽皖苏湘五省煤炭学会联合学术交流会论文集[C];2004年
8 陈才菁;穆玉娥;;向斜构造对地表移动变形的影响规律[A];山东煤炭学会2004年度优秀学术论文集[C];2004年
9 汤伏全;;渭北矿区地表移动概率积分预计模型[A];全国开采沉陷规律与“三下”采煤学术会议论文集[C];2005年
10 蒋斌松;毕卫国;;开挖倾斜煤层引起的地表移动解析[A];第五届全国结构工程学术会议论文集(第三卷)[C];1996年
相关博士学位论文 前8条
1 杜善周;神东矿区大规模开采的地表移动及环境修复技术研究[D];中国矿业大学(北京);2010年
2 贺跃光;工程开挖引起的地表移动与变形模型及监测技术研究[D];中南大学;2003年
3 李凤明;高陡岩质露天矿边坡地表移动变形预测与控制方法研究[D];辽宁工程技术大学;2007年
4 夏小刚;采动岩层与地表移动的“四带”模型研究[D];西安科技大学;2012年
5 廉旭刚;基于Knothe模型的动态地表移动变形预计与数值模拟研究[D];中国矿业大学(北京);2012年
6 李永树;地表移动预计方法及信息处理(SPDP)系统研究[D];中国矿业大学(北京);1997年
7 李培现;深部开采地表沉陷规律及预测方法研究[D];中国矿业大学;2012年
8 郭俊廷;建(构)筑物下“采—充—留”耦合开采理论研究[D];中国矿业大学(北京);2014年
相关硕士学位论文 前10条
1 邢渊;河北天成煤矿岳城水库下采煤安全影响研究[D];中国地质大学(北京);2015年
2 张盼盼;大平矿库下采煤安全影响评价[D];中国地质大学(北京);2015年
3 靳飞;地表移动变形随煤层倾角及地表坡度变化规律的数值模拟分析[D];太原理工大学;2016年
4 王晶;地下铁矿开采与时间相关的地表移动研究[D];河北大学;2007年
5 鄢继选;巨厚松散层条件下地表移动变形动态预报[D];安徽理工大学;2010年
6 邓健;矿区地表移动变形预计及软件研制[D];安徽理工大学;2008年
7 陈玉福;煤炭开采地表移动变形预测及可视化研究[D];中国地质大学(北京);2010年
8 贾林刚;露天矿开采影响下的地表移动变形的模拟预测研究[D];煤炭科学研究总院;2006年
9 杨守国;矿山地表移动预计系统及其在铁山南煤矿中的应用研究[D];重庆大学;2003年
10 吴韶艳;煤矿采空沉陷原理及地表移动变形预测研究[D];长安大学;2011年
,本文编号:2366490
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2366490.html