当前位置:主页 > 科技论文 > 矿业工程论文 >

软岩工作面开采引起上覆岩层移动变形规律研究

发布时间:2019-02-14 18:38
【摘要】:保护层开采及卸压瓦斯抽采是目前首选的区域性瓦斯治理措施,随着保护层的开采,被保护煤层的应力-应变状态和瓦斯应力动力状态会发生改变,煤层中的弹性势能被释放出来,裂隙的发育提高了煤层的透气性,被保护煤层内的瓦斯流动性变大,大量的瓦斯解吸出来,从而达到了卸压的作用,配合合理的抽采瓦斯措施,可以减小煤层内的瓦斯含量和内能,达到预防煤与瓦斯突出的目的。在工作面推进过程中,采场围岩原始的应力平衡被打破,上覆各岩层由于自重和其他岩体的应力作用而失去平衡,从而发生移动和变形。离工作面最近的岩层产生的移动变形最大,岩体的破碎度也最大,在采空区附近形成冒落区;在冒落区的上部岩体内裂隙得到发育,纵横交错的裂隙网组成岩体内的裂隙区;裂隙区上部的岩体保持了较好的稳定性,呈规则状下沉。由于上覆岩层内可能存在地下水、待采煤层、地表有各种建筑物等因素,是否能准确的判断出采场推进后覆岩各岩层的移动变形情况和可能的影响范围,对实际生产和制定安全措施具有非常大的指导意义。在没有合适的煤层作为保护层开采的情况下可以选择相对合理的岩石工作面作为保护层进行开采。本文结合芦岭矿软岩工作面开采的实际生产情况,运用相似模拟实验的方法对软岩工作面开采后引起的覆岩移动变形的情况进行探究,测量不同推进距离条件下采空区中部位置上覆岩层在垂直方向上的应力变化和位移变化情况,对实验得到的数据进行分析整理,结合实验结果对覆岩移动变形的"三带"范围进行预判,探讨软岩工作面作为上部煤层的保护层开采起到的作用效果。为了对覆岩的移动变形情况在整体上加以了解,本文结合数值模拟的方法对软岩工作面开采后可能引起的覆岩移动变形的因素进行定量分析,分析在不同推进距离条件下在采场工作面走向和倾向方向上采空区中部位置上部岩层的应力大小和位移情况,利用岩体受到的主应力作用的大小和性质来判断"三带"的范围,以此来检验软岩工作面作为上部煤层保护层开采的作用效果。利用两种实验方法得到的模拟结果对实际生产有很好的参考意义。
[Abstract]:Protection layer mining and pressure-relief gas drainage are the preferred regional gas control measures at present. With the mining of the protective layer, the stress-strain state and the gas stress dynamic state of the protected coal seam will change. The elastic potential energy in the coal seam is released, the development of the fissure improves the permeability of the coal seam, the gas fluidity in the protected coal seam becomes larger, a large amount of gas desorbs out, thus the function of releasing the pressure is achieved, and the reasonable gas drainage measures are cooperated. The gas content and internal energy in coal seam can be reduced, and the purpose of preventing coal and gas outburst can be achieved. During the working face advance, the original stress balance of surrounding rock in stope is broken, and the overburden strata lose balance because of self-weight and stress action of other rock mass, thus the movement and deformation occur. The rock strata closest to the face produce the largest movement deformation and the largest degree of rock mass fragmentation, forming caving areas near the goaf, the cracks in the upper rock body of the caving area are developed, and the crisscross fissure network forms the fracture area in the rock body. The rock mass in the upper part of the fissure area keeps a good stability, and the subsidence is regular. Because there may be underground water in overlying strata, coal seams to be mined, various buildings on the surface, etc., can accurately judge the movement and deformation of overburden strata after stope pushing and its possible influence range, To the actual production and the formulation of safety measures have a great significance. In the absence of a suitable coal seam as a protective layer, a relatively reasonable rock face can be selected for mining. Combined with the actual production situation of soft rock mining in Luling Mine, this paper uses the method of similar simulation experiment to study the deformation of overlying rock caused by soft rock mining. The stress and displacement changes of overlying strata in the middle of the goaf are measured under different propulsive distances, and the experimental data are analyzed and sorted out. Based on the experimental results, the range of "three zones" of overburden movement and deformation is forecasted, and the effect of soft rock working face as the protective layer of upper coal seam is discussed. In order to understand the movement and deformation of overburden on the whole, this paper, combined with the method of numerical simulation, makes quantitative analysis of the factors which may cause the movement and deformation of overburden after mining in soft rock face. This paper analyzes the stress magnitude and displacement of the upper strata in the middle part of the goaf under the conditions of different propulsive distances, and judges the range of the "three zones" by using the magnitude and nature of the main stress acting on the rock mass. The effect of soft rock working face as the protective layer of upper coal seam is tested. The simulation results obtained by the two experimental methods are very useful for practical production.
【学位授予单位】:安徽理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD325

【相似文献】

相关期刊论文 前10条

1 李庶林;王伟;林建宁;;近地表上覆岩层直壁塌陷机理及稳定性分析[J];中国地质灾害与防治学报;2012年02期

2 牛伟;;厚冲积层浅埋深综放上覆岩层耗散结构研究[J];山东煤炭科技;2013年03期

3 曹宝良;;采空区上覆岩层垂直移动和变形分布规律初步探讨[J];矿山测量;1981年04期

4 左秀峰;开采煤层上覆岩层的移动变形[J];江苏煤炭;1992年03期

5 闫少宏;急斜煤层开采上覆岩层运动的有限变形分析[J];矿山压力与顶板管理;1994年03期

6 翟英达;采场上覆岩层下沉量计算的“模拟载荷”法[J];太原理工大学学报;2001年01期

7 邹喜正,冯光明,刘程;采场上覆岩层移动变形值计算[J];湘潭矿业学院学报;2002年01期

8 王志国;周宏伟;谢和平;左建平;;深部开采上覆岩层移动的现场监测分析[J];金属矿山;2009年01期

9 陈清运;杨从兵;王水平;张电吉;;无底柱分段崩落法开采上覆岩层力学参数研究[J];武汉工程大学学报;2010年07期

10 梁赛江;;工作面推进过程中上覆岩层冒落的数值模拟[J];山东科技大学学报(自然科学版);2011年06期

相关会议论文 前5条

1 秦玉金;;上覆岩层卸压高度影响因素及预测模型的研究[A];第四届全国煤炭工业生产一线青年技术创新文集[C];2009年

2 丁燕斌;狄磊;;充填工作面上覆岩层活动规律及充填区域支护方式研究[A];煤炭开采新理论与新技术——中国煤炭学会开采专业委员会2012年学术年会论文集[C];2012年

3 李宏建;王海亮;孙星亮;;高速推进工作面上覆岩层运动规律及支架围岩相互作用关系研究[A];矿井建设与岩土工程技术新发展[C];1997年

4 唐世斌;唐春安;梁正召;于庆磊;;采动诱发灵新煤矿上覆岩层垮落过程的数值试验[A];第十届全国岩石力学与工程学术大会论文集[C];2008年

5 刘帅;武俊平;王辰;李方枢;李蒙蒙;;PFC3D中上覆岩层自重荷载模拟方式的研究[A];北京力学会第19届学术年会论文集[C];2013年

相关重要报纸文章 前1条

1 ;钱鸣高院士科教成果[N];中国煤炭报;2001年

相关博士学位论文 前2条

1 王志国;深部开采上覆岩层中采动裂隙网络演化规律研究[D];中国矿业大学(北京);2011年

2 翟英达;采场上覆岩层结构的面接触类型及稳定性力学机理[D];煤炭科学研究总院;2002年

相关硕士学位论文 前10条

1 王康;小纪汗煤矿顶板上覆岩层移动规律研究[D];中国矿业大学;2015年

2 王瑞;孝义柱濮镇采空滑坡成因机制及防治[D];太原理工大学;2015年

3 郑贺斌;综放工作面上覆岩层运动规律及支架选型研究[D];太原理工大学;2016年

4 李孝波;深埋煤层充填开采技术及上覆岩层稳定性评价研究[D];西安科技大学;2015年

5 朱威;软岩工作面开采引起上覆岩层移动变形规律研究[D];安徽理工大学;2017年

6 杨同海;45°煤层水平分段综放开采上覆岩层移动破坏规律研究[D];西安科技大学;2006年

7 郜国肖;房柱式开采条件下上覆岩层活动规律及上行开采可行性研究[D];太原理工大学;2015年

8 任永康;千秋矿放顶煤采场上覆岩层移动及矿压显现规律研究[D];河南理工大学;2011年

9 田维军;缓倾斜中厚磷矿床地下开采采场矿压显现及上覆岩层变形破坏规律[D];重庆大学;2010年

10 吕霁;特厚煤层综放开采上覆岩层破坏规律研究[D];北方工业大学;2010年



本文编号:2422480

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2422480.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户55617***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com