当前位置:主页 > 科技论文 > 矿业工程论文 >

非公路宽体矿用自卸车车架结构失效分析及疲劳寿命预测

发布时间:2019-06-02 17:33
【摘要】:本文在校企合作项目“XXX型号非公路宽体矿用自卸车车架断裂失效分析及结构改进设计”基础上,对于非公路宽体矿用自卸车车架失效分析及结构改进展开研究。非公路宽体矿用自卸车是目前小型矿山运输的主要设备,它自身体积大,载重量大,工作环境恶劣,多工作于路况很差的矿山矿区,使用条件复杂多变。特殊的工作条件使得自卸车所受到的动态载荷的变化大,当重载行驶在坡多弯多侧倾坡多的颠簸路面时,受到来自路面的冲击载荷和随机载荷对整车结构是一个非常大的挑战。本文中的矿用自卸车整车空载质量21吨,设计最大载重量80吨,空车行驶速度30km/h,载货正常行驶速度10km/h。每天使用超过20小时,在使用3~5个月后,行驶不足5万公里,大量车架出现了裂纹,严重影响了工作效率及工作质量,使企业承受了巨大的经济损失。为了找出车架断裂的原因,同时提出结构改进设计方案,本文围绕非公路宽体矿用自卸车车架的刚度强度展开研究,结合了有限元静态线性分析、多体动力学动态应力分析、整车的静动态测试和疲劳寿命预测分析,最终形成了一套完整的针对非公路宽体矿用自卸车车架断裂失效的分析研究体系,对今后的工程实践提供参考依据。全文共分为七部分: 第一章为绪论,介绍了非公路宽体矿用自卸车的研究背景和研究意义,详细描述了非公路宽体矿用自卸车的结构组成以及发展现状和趋势,通过对国内外研究学者对非公路宽体矿用自卸车的相关研究,以及针对非公路宽体矿用自卸车车架失效等问题的研究分析对比之后,提出了本文的研究方向和内容。 第二章对车架和悬架的刚度匹配技术进行研究。由于车架所受的载荷主要是由悬架传递的,悬架作为与车架相连的重要传力部件,它的刚度直接影响了车架的刚度,对前后悬架间的刚度匹配以及车架与悬架的刚度匹配进行了计算。 第三章是对车架失效问题的线性有限元静态分析。结合Pro/E—HyperMesh—ANSYS建立有限元模型,并采用适当的单元类型模拟各种结构和边界条件,选择典型工况对失效车架的有限元分析,结合应力强度因子理论和应力集中系数理论,找到车架失效的原因和位置,并提出合理化的改进方案,同时对车架改进前后的有限元静态分析和模态分析进行了对比分析。 第四章是基于多体动力学的车架仿真分析及动态应力研究。本章结合多体动力学理论,建立非公路宽体矿用自卸车整车虚拟样机模型,仿真分析了两种典型的路面工况,为以后的疲劳寿命预测分析做准备,即提取车架载荷传递点的载荷谱。 第五章为整车关键技术的测试验证。在上文中对非公路宽体矿用自卸车车架进行有限元静态分析和多体动力学动态应力计算后,为了验证这两次计算的合理性,需要对车架进行测试验证。通过对比分析,,有限元静态分析结果与静态测试结果基本一致,多体动力学仿真结果曲线与在标准试验场地的测试曲线大体吻合,说明有限元分析和多体动力学仿真和合理性。通过对矿区场地的动态测试,找到静动态测试的应力映射系数,继而推出原失效车架的动态数据。 第六章对车架结构的疲劳寿命进行了预测分析。利用上文中基于ADAMS/VIEW多体动力学仿真分析,提取车架载荷传入点的载荷谱,通过动态载荷模拟的方法,计算出车架载荷随时间的变化历程,利用ncode疲劳寿命分析软件对车架疲劳寿命进行了评估。 第七章对全文的内容进行了总结,同时对今后的研究提出了几点展望。 本文主要有以下三点创新点: (1)建立了刚柔耦合的车架模型,并建立了整车的虚拟样机仿真模型,结合实际工作路面情况创建模拟路面,进行了多体动力学仿真分析,通过测试验证仿真结果的准确性,为工程实际应用提供一种可靠的虚拟样机仿真分析方法。 (2)对非公路宽体矿用自卸车车架及相关部件进行了典型工况的静动态测试,并与CAE仿真分析方法进行了对比验证,本次的静动态测试是一套比较完整和大型的测试过程,对今后的相关测试及工程应用提供参考。 (3)提取动力学仿真分析得到的载荷时间历程曲线,作为疲劳计算的载荷谱输入,得出原失效结构的疲劳寿命符合实际断裂时间,并可用于改进后车架的疲劳寿命预测,这一工作对工程车辆的研究具有参考意义。
[Abstract]:On the basis of the "The Analysis of the Failure and the Design of the Structure of the Frame of the Mining Dump Truck with XXX Model of Non-Highway and Wide Body" of the cooperative project of the school-enterprise, this paper studies the failure analysis and the structure improvement of the frame of the non-highway wide-body mining dump truck. The non-highway wide-body mining dump truck is the main equipment for the small-scale mine transportation at present, its own volume is large, the weight is large, the working environment is bad, and the mining area with poor road condition is more and more complicated and changeable. The special working conditions cause the dynamic load of the dump truck to be large, and when the heavy load runs on the multi-curved and multi-side slope road, the impact load and the random load from the road surface are a very big challenge to the whole vehicle structure. The no-load mass of the mining dump truck in this paper is 21 tons, the design maximum load capacity is 80 tons, the running speed of the empty vehicle is 30 km/ h, and the normal running speed of the cargo truck is 10 km/ h. The use of more than 20 hours a day, after 3-5 months of use, the driving is less than 50,000 km, and a large number of frames have cracks, which seriously affect the work efficiency and the work quality, so that the enterprise can bear huge economic losses. In order to find out the reason of the frame fracture, and to put forward the structural improvement design scheme, this paper studies the stiffness of the frame of the non-highway wide-body mining dump truck, and combines the static linear analysis of the finite element and the dynamic stress analysis of the multi-body dynamics. The static dynamic test and the fatigue life prediction analysis of the whole vehicle finally form a complete analysis and research system for the failure of the frame of the non-highway wide-body mining dump truck, and provide the reference basis for future engineering practice. The full text is divided into seven parts: The first chapter is the introduction, the research background and significance of the non-highway wide-body mining dump truck are introduced, the structure composition and the trend of the development of the non-highway wide-body mining dump truck are described in detail. In this paper, the research direction and interior of this paper are put forward through the research on the relevant research of the non-highway wide-body mining dump truck and the research and analysis of the failure of the non-highway wide-body mining dump truck. The second chapter introduces the rigidity matching technology of the frame and the suspension. The stiffness of the frame is directly affected by the rigidity of the frame, the rigidity matching between the front and rear suspensions, and the rigidity matching of the frame and the suspension. The third chapter is the linear finite element of the frame failure problem The finite element model is established by using the Pro/ E-HyperMesh and ANSYS, and various structures and boundary conditions are simulated by using the appropriate unit type. The finite element analysis of the failure frame under typical working conditions is selected, and the failure of the frame is found by combining the stress intensity factor theory and the stress concentration coefficient theory. Reason and location, and put forward a reasonable improvement scheme, at the same time, the finite element static analysis and the modal analysis before and after the improvement of the frame are carried out The fourth chapter is the frame simulation analysis based on multi-body dynamics Based on the multi-body dynamics theory, the vehicle virtual prototype model of the non-highway wide-body mining dump truck is established, and the two typical road conditions are analyzed, and the future fatigue life prediction analysis is prepared, that is, the frame load is extracted. The load spectrum of the transfer point. The fifth chapter is the whole vehicle The test and verification of the key technologies are as follows: after the finite element static analysis and the multi-body dynamic stress calculation of the non-highway wide-body mining dump truck frame, in order to verify the rationality of the two calculations, it is necessary to The test and verification of the frame are carried out. The results of the static analysis of the finite element are basically the same as the static test results. The results of the multi-body dynamics simulation are in general agreement with the test curves at the standard test site, and the finite element analysis and the multi-body analysis are described. Dynamic simulation and rationality. Through the dynamic test of the site of the mining area, the stress mapping coefficient of the static dynamic test is found, and then the original Dynamic data of a failed frame. Chapter 6: Structure of the frame The fatigue life is predicted and analyzed. Based on the multi-body dynamics simulation analysis of ADAMS/ VIEW, the load spectrum of the load transfer point of the frame is extracted, the change course of the frame load over time is calculated by the method of dynamic load simulation, and the software is analyzed by using the ncode fatigue life analysis software. The fatigue life of the frame is evaluated. Chapter 7 summarizes the contents of the full text and at the same time Some prospects for future research are put forward. This paper mainly has the following three points of innovation: (1) The frame model of rigid-flexible coupling is set up, and the virtual prototype simulation model of the whole vehicle is established. The multi-body dynamics simulation analysis is carried out on the simulated road surface, and the accuracy of the simulation results is verified by the test, so that the practical application of the project A reliable virtual prototype simulation analysis method is provided. (2) The static and dynamic test of a typical working condition of a non-highway wide-body mining dump truck frame and related components is carried out, and compared with the CAE simulation analysis method, the static dynamic test is carried out, Dynamic testing is a relatively complete and large test (3) the load time history curve obtained by the dynamic simulation analysis is taken as the load spectrum input of the fatigue calculation to obtain the actual fatigue life of the original failure structure. Fracture time and can be used to improve the fatigue life of the rear frame
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TD562.1

【参考文献】

相关期刊论文 前10条

1 王录山;王国权;张红松;王丽荣;;重载自卸车车架强度的有限元分析[J];北京信息科技大学学报(自然科学版);2010年02期

2 王军;马若丁;王继新;杨芙蓉;闫振华;;矿用自卸车车架强度有限元分析[J];工程机械;2008年11期

3 马肇基,原拽龙;BJZ3364型自卸车车架开裂的原因分析[J];工程机械与维修;2003年05期

4 黄兴全;;重型载重汽车车架的设计浅析[J];装备制造技术;2009年07期

5 陈树勋;陈建军;陈伟光;;某矿用车多种工况下的结构分析与优化设计[J];装备制造技术;2010年02期

6 沈炜良;边立静;伍建华;;重型载货汽车车架的结构分析及优化设计[J];广西大学学报(自然科学版);2007年03期

7 罗礼培;张祖同;樊启才;李玮;龚改民;朱红文;;非公路宽体自卸车市场研究及前景分析[J];工程机械文摘;2012年03期

8 成凯;刘维维;廖清德;郑森;郝庆升;;基于ADAMS的矿用自卸车车架动态应力分析[J];中国工程机械学报;2014年02期

9 于长吉,王平一;矿用重型汽车车架断裂研究[J];大连工学院学报;1984年01期

10 董志明;丁浩然;;自卸车工况分析及典型工况下车架应力计算[J];机械工程师;2009年09期

相关博士学位论文 前3条

1 郝赫;多轴重型汽车刚弹耦合虚拟样机分析与匹配[D];吉林大学;2011年

2 李飞;轿车转向节耐久性寿命预测研究[D];吉林大学;2010年

3 刘伟;客车悬架橡胶衬套对整车性能影响研究与多目标优化[D];吉林大学;2012年



本文编号:2491300

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2491300.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户78ab1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com