基于前视钻孔图像的特征提取分类及全景图合成研究
[Abstract]:Geological exploration is a necessary process before geological engineering. With the development of related technologies, it has become a very important technology in geological exploration to obtain drilling hole wall images by using forward looking drilling imaging technology for geological analysis. At present, there are two main problems in the analysis and processing of forward-looking drilling images. On the one hand, a large number of drilling image analysis and classification work has brought great challenges to technicians; on the other hand, forward-looking drilling images are difficult to synthesize hole wall panoramic images, which limits the analysis level. It is of great significance to use digital image processing and pattern recognition technology to complete classification and synthesize panoramic images of hole wall instead of manual classification, which is of great significance to improve the level of geological analysis and expand the application range of forward looking drilling camera. In this paper, the drilling image is regarded as the research object, and the feature extraction classification and panoramic image synthesis technology of forward looking drilling image are studied. In the aspect of feature extraction and classification technology of forward looking drilling image, this paper introduces the common feature extraction methods based on the traditional feature extraction method, and analyzes its shortcomings, with emphasis on the basic principle and characteristics of Contourlet transform and non-downsampling Contourlet transform, as well as its advantages in natural texture features. By extracting the statistical features of non-downsampled Contourlet transform subband coefficients combined with the Hu invariant moment features of drilling images, and then using variance statistics to select features to form feature vectors, finally, the classification experiments are verified by BP neural network, and satisfactory experimental results are obtained. In the aspect of panoramic image synthesis technology of forward-looking drilling image, the basic principle and imaging characteristics of forward-looking drilling imaging and digital optical imaging are analyzed in this paper, and the feasibility of synthesizing hole wall panoramic image from forward-looking drilling image is determined. through the research of key technologies such as center positioning, annular area expansion and image matching and stitching, a good panoramic image of hole wall is obtained, which lays a foundation for subsequent geological analysis. The algorithms proposed in this paper are verified on Matlab platform, and satisfactory results are obtained, which proves the feasibility of the algorithm.
【学位授予单位】:山东科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P624;TP391.41
【参考文献】
相关期刊论文 前10条
1 刘树新;王文杰;;基于数字钻孔摄像技术的岩层结构面统计[J];内蒙古煤炭经济;2017年02期
2 杨程;徐晓刚;王建国;;图像配准技术研究[J];计算机科学;2016年S2期
3 汪进超;王川婴;韩增强;胡胜;;基于钻孔摄像技术的珊瑚礁完整性评价分析[J];中南大学学报(自然科学版);2016年05期
4 朱炼;孙枫;夏芳莉;韩瑜;;图像融合研究综述[J];传感器与微系统;2014年02期
5 张鑫;陈伟斌;;Contourlet变换系数加权的医学图像融合[J];中国图象图形学报;2014年01期
6 王华锋;王玉婷;柴华;;基于纹理特征的测井图像分类算法的研究[J];计算机研究与发展;2013年06期
7 赵猛;曹茂永;滕升华;;一种聚类与灰度投影相结合的电子稳像方法[J];山东科技大学学报(自然科学版);2013年02期
8 王佳奕;葛玉荣;;基于Contourlet变换和支持向量机的纹理识别方法[J];计算机应用;2013年03期
9 姚旭;王晓丹;张玉玺;权文;;特征选择方法综述[J];控制与决策;2012年02期
10 康红普;司林坡;苏波;;煤岩体钻孔结构观测方法及应用[J];煤炭学报;2010年12期
相关博士学位论文 前3条
1 汪启伟;图像直方图特征及其应用研究[D];中国科学技术大学;2014年
2 廖斌;基于特征点的图像配准技术研究[D];国防科学技术大学;2008年
3 倪伟;基于多尺度几何分析的图像处理技术研究[D];西安电子科技大学;2008年
相关硕士学位论文 前3条
1 尹程果;模式识别中分类器学习能力与泛化性的改进[D];重庆大学;2012年
2 卜富清;基于人工神经网络的图像识别和分类[D];成都理工大学;2010年
3 万宜;基于小波神经网络的车牌自动识别研究[D];东南大学;2004年
,本文编号:2497552
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2497552.html