基于成矿条件数值模拟和支持向量机算法的深部成矿预测——以粤北凡口铅锌矿为例
发布时间:2025-03-26 18:59
随着计算机科学和地质大数据技术的迅猛发展,数值模拟和机器学习已成为当今地学领域定量发展的重要前沿方向。数值模拟综合运用了研究区地质、构造、地球物理、地球化学等多源信息,将成矿条件与过程进行量化模拟分析,对研究成矿动力学演化过程及成矿响应有重要意义,可对已有成矿要素/信息在时空上进行扩展/外推,扩大了成矿预测信息的广度和深度,为解决深部成矿预测中获取深部信息难题提供了一种可能的有效途径。支持向量机是一种重要的机器学习分类算法,它具有简洁、方便、高效和计算结果较稳定等特点,在众多领域中得以成功应用,是成矿预测中多源信息提取与融合的一种可靠的技术手段。为了充分利用数值模拟与机器学习的优势,本文提出将计算机数值模拟方法和机器学习(即支持向量机算法)相结合来进行深部成矿预测的新方法。以粤北凡口超大型铅锌矿为例,首先,对凡口矿区勘探线剖面进行构造应力场模拟;进而,以已知钻孔数据作为训练集和测试集,运用支持向量机算法对模拟结果中的不同参量(也即模拟所得的成矿条件)进行训练学习;最后,建立相应的定量找矿预测模型对研究区(或剖面)外围和深部找矿进行预测评价。研究结果表明,本文所建立的预测模型精确度和召回...
【文章页数】:9 页
【文章目录】:
0 引言
1 研究区地质背景
2 研究方法
2.1 数值模拟
2.2 支持向量机
3 研究结果与讨论
4 结论
本文编号:4037665
【文章页数】:9 页
【文章目录】:
0 引言
1 研究区地质背景
2 研究方法
2.1 数值模拟
2.2 支持向量机
3 研究结果与讨论
4 结论
本文编号:4037665
本文链接:https://www.wllwen.com/kejilunwen/kuangye/4037665.html
上一篇:R市矿产资源管理存在问题与对策研究
下一篇:没有了
下一篇:没有了
最近更新
教材专著