剪切型Beam Lattice模型及其在岩石翼裂纹扩展和贯通模拟中的应用
本文选题:翼裂纹 + 裂纹贯通 ; 参考:《东南大学学报(自然科学版)》2017年02期
【摘要】:采用考虑剪切效应和Mohr-Coulomb失效准则的剪切型Beam Lattice(SBL)模型来模拟翼裂纹扩展和贯通过程中出现的次生裂纹.该模型采用随机多边形网格来反映材料的非均质性,在结果分析中应用裂纹扩展路径来区分张拉型和剪切型裂纹扩展.利用SBL模型对不同间距的初始裂纹进行模拟,并将模拟结果和实验观测结果进行比对.结果表明,SBL模型可以较为准确地模拟不同模式下的裂纹扩展和贯通路径.翼裂纹的扩展和贯通呈现阶段性,首先出现张拉型裂纹,当裂纹间距为10 mm时出现清晰的贯通裂纹,最后出现剪切型裂纹.裂纹的扩展进程在加载前中期保持稳定,而在加载末期时明显加快,出现不稳定扩展的现象.SBL模型中考虑更多的剪切效应会得到更多的剪切型裂纹.
[Abstract]:A shear beam Lattice-Shear (SBL) model considering shear effect and Mohr-Coulomb failure criterion is used to simulate the secondary cracks in the process of crack propagation and transfixion. In this model, random polygonal meshes are used to reflect the heterogeneity of materials, and crack propagation paths are used to distinguish tensile and shear crack growth in the result analysis. The SBL model is used to simulate the initial cracks with different spacing, and the simulation results are compared with the experimental results. The results show that the SBL model can accurately simulate the crack propagation and breakthrough paths in different modes. The propagation and transfixion of the wing crack are phased, the tensile crack appears at first, when the crack spacing is 10 mm, the through crack appears clearly, and finally the shear mode crack appears. The process of crack propagation remains stable in the middle and before loading period, but it accelerates obviously at the end of loading. The phenomenon of unstable growth occurs in the SBL model. More shear cracks can be obtained when more shear effects are considered in the SBL model.
【作者单位】: 东南大学土木工程学院;东南大学江苏省工程力学分析重点实验室;
【基金】:国家重点研发计划资助项目(2016YFC0701301) 江苏省研究生培养创新工程资助项目(KYLX_094)
【分类号】:O346.1
【相似文献】
相关期刊论文 前10条
1 李文艺;椭圆形裂纹扩展问题中一个变换式的证明[J];地球物理学报;1988年01期
2 牛庠均;非线性裂纹扩展分析(二)[J];北京工业大学学报;1991年02期
3 周斌生,汤晓英,王正东,吴东棣;高温蠕变裂纹扩展参量Q~*(t)及其应用[J];材料工程;2003年10期
4 王水林,冯夏庭,葛修润;高阶流形方法模拟裂纹扩展研究[J];岩土力学;2003年04期
5 黄凯珠;黄明利;焦明若;唐春安;;三维表面裂纹扩展特征的研究[J];岩石力学与工程学报;2003年S1期
6 鲍蕊;董彦民;张建宇;费斌军;;腐蚀条件下铝合金疲劳裂纹扩展试验及模型[J];航空材料学报;2006年06期
7 薛鸿祥;唐文勇;张圣坤;;近门槛区裂纹扩展曲面族的优化构建[J];机械科学与技术;2007年03期
8 李有堂;赵学才;郑双丽;;求解裂纹扩展参数的最简回归[J];甘肃科学学报;2007年04期
9 张敦福;李术才;;修正的拉应力裂纹扩展准则及裂隙水压对裂纹扩展的影响[J];计算力学学报;2009年01期
10 唐慧云;董羽蕙;苏利勋;;应用无网格法对单裂纹扩展的数值模拟[J];科学技术与工程;2009年13期
相关会议论文 前10条
1 高存法;;磁场对软磁铁介质内裂纹扩展行为的影响[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
2 姜燕;乐金朝;;沥青路面Ⅰ型裂纹扩展的理论分析与数值仿真[A];中国力学学会学术大会'2009论文摘要集[C];2009年
3 常亮明;;田湾核电站反应堆压力容器2#焊缝的假定裂纹扩展计算[A];北京力学会第十六届学术年会论文集[C];2010年
4 郭瑞;陈章华;班怀国;;裂纹扩展的无网格有限元模拟[A];北京力学会第13届学术年会论文集[C];2007年
5 刘绍伦;;关于裂纹扩展路径问题的研究[A];北京力学学会第12届学术年会论文摘要集[C];2006年
6 唐旭海;郑超;张建海;;多边形有限元法模拟裂纹扩展[A];第17届全国结构工程学术会议论文集(第Ⅰ册)[C];2008年
7 余天堂;李海杰;任青文;;裂纹扩展数值模拟影响因素分析[A];第17届全国结构工程学术会议论文集(第Ⅰ册)[C];2008年
8 刘文光;陈国平;;含裂纹平板的振动特性及裂纹扩展分析[A];第十届全国振动理论及应用学术会议论文集(2011)下册[C];2011年
9 祁涛;;管道内表面非中心裂纹扩展研究[A];第十七届全国反应堆结构力学会议论文集[C];2012年
10 周磊;郭雅芳;;金属镁中沿晶裂纹扩展的分子动力学研究[A];中国力学大会——2013论文摘要集[C];2013年
相关博士学位论文 前10条
1 师访;岩石破裂过程的扩展有限元法研究[D];中国矿业大学;2015年
2 邓国坚;微尺度下疲劳小裂纹扩展特性的试验研究[D];华东理工大学;2015年
3 王雁冰;爆炸的动静作用破岩与动态裂纹扩展机理研究[D];中国矿业大学(北京);2016年
4 陈昊东;热荷载作用下玻璃破裂特性及裂纹扩展模拟研究[D];中国科学技术大学;2016年
5 郭萍;TC4-DT钛合金损伤行为研究[D];西北工业大学;2015年
6 刘淑兰;Ni基单晶高温合金中合金化元素对裂纹扩展作用的原子学模拟[D];钢铁研究总院;2015年
7 吴建国;裂纹扩展与损伤演化理论与应用研究[D];北京航空航天大学;2009年
8 邱宝象;基于连续累积损伤的疲劳启裂和裂纹扩展的统一模型[D];浙江工业大学;2009年
9 周绍青;工程断裂中的T应力及其对裂纹扩展路径的影响[D];中南大学;2010年
10 黄小光;腐蚀疲劳点蚀演化与裂纹扩展机理研究[D];上海交通大学;2013年
相关硕士学位论文 前10条
1 李彩霞;基于扩展有限元法的裂纹扩展分析研究[D];西南交通大学;2015年
2 刘帆;船海结构物疲劳热点裂纹应力强度因子及其扩展路径预报方法研究[D];上海交通大学;2015年
3 赵莉莉;喷丸残余应力对裂纹扩展疲劳寿命影响的数值模拟研究[D];山东大学;2015年
4 李玉涛;含内部裂纹Q345钢在单轴拉伸作用下的破坏研究[D];广西大学;2015年
5 乔龙;低强度地震波和不同低温下管道裂纹扩展的模拟研究[D];新疆大学;2015年
6 洪圆;Ⅰ+Ⅱ复合型裂纹在TA2中的转型扩展研究[D];北京化工大学;2015年
7 陈白斌;基于扩展比例边界有限元法的混凝土结构裂纹扩展模拟[D];大连理工大学;2015年
8 暴艳利;基于多边形比例边界有限元的重力坝地震断裂问题研究[D];大连理工大学;2015年
9 曹然;复合材料多瓣易碎盖设计与实验研究[D];南京航空航天大学;2014年
10 吕毅;梯度复合材料的裂纹扩展研究[D];南京航空航天大学;2014年
,本文编号:2005476
本文链接:https://www.wllwen.com/kejilunwen/lxlw/2005476.html