当前位置:主页 > 科技论文 > 力学论文 >

大运动曲梁应力刚化效应特征值分析

发布时间:2018-06-29 20:54

  本文选题:多体系统动力学 + 曲梁 ; 参考:《振动工程学报》2016年05期


【摘要】:从连续介质力学非线性位移-应变关系出发,导出计入应力刚化效应的柔性梁变形能表达式。利用哈密顿变分原理和浮动框架有限元方法(Finite Element Method of Floating Frame of Reference,简记为FEMFFR)导出了匀速转动非惯性系中曲梁的动力学方程。通过数值仿真分析了曲梁的旋转软化(Spin Softening)和应力刚化(Stress Stiffening)效应,并与ANSYS软件仿真结果进行了对比,从结构动力学特征值角度验证了基于连续介质力学非线性位移-应变关系为高速旋转曲梁引入应力刚化效应的方法的正确性。由于曲梁结构不再像直梁结构那样拥有独立的纵向和横向振动模态,为此讨论了改进的Craig-Bampton模态综合法在一般运动曲梁系统中的应用及其缩减策略,为利用浮动框架有限元方法建立满足基于小变形假设的高速旋转柔性曲梁动力学模型提供了参考。
[Abstract]:Based on the nonlinear displacement-strain relationship in continuum mechanics, the deformation energy expression of flexible beam with stress hardening effect is derived. By using the Hamiltonian variational principle and the finite element method of floating frame of reference (FEMFFR), the dynamic equations of curved beams in a uniform rotational non-inertial frame are derived. The spin softening and stress hardening effects of curved beams are analyzed by numerical simulation, and the results are compared with those of ANSYS software. Based on the nonlinear displacement-strain relationship in continuum mechanics, the method of introducing stress stiffening effect into high-speed rotating curved beams is verified from the point of view of structural dynamics eigenvalues. Since curved beam structures no longer have independent longitudinal and transverse vibration modes as straight beam structures, the application of the improved Craig-Bampton modal synthesis method to general moving curved beam systems and its reduction strategy are discussed. It provides a reference for the establishment of dynamic model of high speed rotating flexible curved beam based on the assumption of small deformation by using the finite element method of floating frame.
【作者单位】: 南京理工大学发射动力学研究所;
【基金】:国家自然科学基金资助项目(11102089) 江苏省研究生培养创新计划基金资助项目(CXZZ12-0177)
【分类号】:O313.7


本文编号:2083341

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/lxlw/2083341.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户4a03b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com