弹性边界下圆弧拱的自由振动分析
发布时间:2018-08-06 20:59
【摘要】:工程中圆弧拱的边界不能总被简化为理想的简支或固支形式。为了研究弹性支承对圆弧拱自由振动特性的影响规律,将力、位移等变量无量纲化。根据平衡方程和坐标转换推导得出极坐标下圆弧拱在水平、竖直和转动方向支撑条件为弹性时的边界条件方程。并采用考虑弯曲和轴向变形而忽略剪切变形及转动惯量的自由振动的运动控制方程。运动方程在边界条件情况下,其解仅为关于矢跨比f,细长比s和无量纲刚度阵[K]的函数。采用Runge-Kutta法和行列式搜索法求解运动方程的特征值即无量纲频率Ωi以及特征向量即振型。通过计算发现,与理想支撑相比,弹性支承情况下细长比s对拱自振频率的影响要明显下降。理想支撑情况下圆弧拱的自振频率越高,则弹性支承对其自振频率的影响越小。与水平和竖向弹性支承相比,转动方向弹性支承仅对圆弧拱基频有较大影响。
[Abstract]:In engineering, the boundary of arc arch can not always be simplified to ideal simple support or fixed support form. In order to study the influence of elastic support on the free vibration characteristics of arc arch, the variables such as force and displacement are dimensionless. According to the equilibrium equation and coordinate transformation, the boundary condition equation of arc arch with elastic support condition in horizontal, vertical and rotational direction under polar coordinates is derived. The governing equation of free vibration considering bending and axial deformation and ignoring shear deformation and moment of inertia is adopted. In the case of boundary conditions, the solution of the equation of motion is only a function of the vector-span ratio f, the slenderness ratio s and the dimensionless stiffness matrix [K]. Runge-Kutta method and determinant search method are used to solve the eigenvalue of motion equation, i.e. dimensionless frequency 惟 I and eigenvector mode. It is found by calculation that the effect of slenderness ratio s on the natural vibration frequency of the arch is obviously decreased when compared with the ideal bracing. The higher the natural frequency of arc arch is, the less the effect of elastic support on its natural vibration frequency is. Compared with the horizontal and vertical elastic supports, the rotation direction of the elastic support only has a greater effect on the fundamental frequency of the arc arch.
【作者单位】: 解放军理工大学爆炸冲击防灾减灾国家重点实验室;南京理工大学机械工程学院;
【分类号】:O327
本文编号:2168971
[Abstract]:In engineering, the boundary of arc arch can not always be simplified to ideal simple support or fixed support form. In order to study the influence of elastic support on the free vibration characteristics of arc arch, the variables such as force and displacement are dimensionless. According to the equilibrium equation and coordinate transformation, the boundary condition equation of arc arch with elastic support condition in horizontal, vertical and rotational direction under polar coordinates is derived. The governing equation of free vibration considering bending and axial deformation and ignoring shear deformation and moment of inertia is adopted. In the case of boundary conditions, the solution of the equation of motion is only a function of the vector-span ratio f, the slenderness ratio s and the dimensionless stiffness matrix [K]. Runge-Kutta method and determinant search method are used to solve the eigenvalue of motion equation, i.e. dimensionless frequency 惟 I and eigenvector mode. It is found by calculation that the effect of slenderness ratio s on the natural vibration frequency of the arch is obviously decreased when compared with the ideal bracing. The higher the natural frequency of arc arch is, the less the effect of elastic support on its natural vibration frequency is. Compared with the horizontal and vertical elastic supports, the rotation direction of the elastic support only has a greater effect on the fundamental frequency of the arc arch.
【作者单位】: 解放军理工大学爆炸冲击防灾减灾国家重点实验室;南京理工大学机械工程学院;
【分类号】:O327
【相似文献】
相关期刊论文 前4条
1 程鹏,童根树;圆弧拱平面内弯曲失稳一般理论[J];工程力学;2005年01期
2 禹奇才;梁夏莉;邝钜滔;刘爱荣;邓江东;沈剑文;;集中力作用下圆弧拱侧倾屈曲临界荷载解析解[J];暨南大学学报(自然科学与医学版);2014年01期
3 蒋伟;吕大刚;;混凝土两铰圆弧拱的面内徐变稳定性[J];工程力学;2012年S2期
4 ;[J];;年期
相关会议论文 前3条
1 钱志忠;刘涛;弓剑;李晓舟;;首都机场地面交通中心大跨度圆弧拱的制作工艺研究及应用[A];第二届全国钢结构施工技术交流会论文集[C];2008年
2 顾荣勇;舒赣平;;圆弧拱稳定分析[A];钢结构工程研究(七)——中国钢结构协会结构稳定与疲劳分会2008年学术交流会论文集[C];2008年
3 刘涛;孙思斌;周春芳;刘娟;郭睿;谭娟;;北京首都国际机场地面交通中心(GTC)大跨度厚板变截面圆弧拱的加工制作工艺[A];中国大型建筑钢结构工程设计与施工[C];2007年
相关博士学位论文 前1条
1 程鹏;两铰圆弧拱非线性弯曲理论和弹塑性稳定[D];浙江大学;2005年
相关硕士学位论文 前2条
1 邝钜滔;集中力作用下圆弧拱的侧倾屈曲的理论与实验研究[D];广州大学;2013年
2 刘宗民;双轴对称工字型截面圆弧拱侧倾屈曲及其解析解的分析[D];哈尔滨工程大学;2006年
,本文编号:2168971
本文链接:https://www.wllwen.com/kejilunwen/lxlw/2168971.html