随机激励下滞迟系统的稳态响应闭合解
[Abstract]:Hysteretic system is a kind of typical strongly nonlinear system. The hysteresis force depends not only on the instantaneous deformation of the system, but also on the deformation history. Although the stochastic vibration of hysteretic systems has been widely studied, the exact closed solution of probability density function for stochastic response of hysteretic systems has not been obtained. In this paper, the approximate closed solution of probability density function of steady-state response of Bouc-Wen hysteretic system excited by Gao Si white noise is obtained by using iterative weighted residual method. First of all, we use the equivalent linearization method to calculate the steady state Gao Si probability density function of the system, then we construct the weight function and use the weighted residuals method to obtain the non-Gao Si probability density function in the form of exponential polynomial of the system. Finally, the iterative process is introduced. The weight function is optimized step by step to improve the accuracy of the calculated results. The steady-state response of steel fiber ceramsite concrete structure under random earthquake excitation is taken as an example. The parameters of Bouc-Wen model are based on quasi-static test data and are identified by least square method. Compared with the Monte Carlo simulation results, the accuracy of the results obtained by the equivalent linearization method is poor, the results obtained by the weighted residuals method can show nonlinear characteristics, but the accuracy is still not satisfactory. The approximate closed solution obtained by the iterative weighted residual method is in good agreement with the result of Monte Carlo simulation, and for the strong random excitation case, the incremental iterative weighted residual method has a higher efficiency. The theoretical analytical solutions obtained are of high accuracy. The results show that the obtained approximate closed solutions not only have important practical application value in the field of civil engineering, but also can be used as a standard to test the accuracy of other nonlinear system stochastic response prediction methods.
【作者单位】: 华侨大学土木工程学院;加州大学Merced分校工程学院;
【基金】:国家自然科学基金(11172197,11332008,11572215,11672111,51608211) 福建省自然科学基金(2013J05080) 福建省高校杰出青年科研人才培育计划 华侨大学优秀青年科技创新人才(ZQN-YX307)资助项目
【分类号】:O324
【相似文献】
相关期刊论文 前10条
1 骆东平,李鸿芬,,罗斌;阻尼材料对环肋柱壳稳态响应影响的分析[J];振动工程学报;1995年03期
2 李大望,霍达,周锡元,石志晓;摩擦摆系统的稳态响应概率分布研究[J];振动与冲击;2002年01期
3 张淼;;亏损结构振动方程的稳态响应求解[J];吉林师范大学学报(自然科学版);2014年01期
4 管迪;陈乐生;;分段线性不对称迟滞系统的稳态响应[J];机械强度;2009年02期
5 刘洋,王振;R-法在激振频率较高的稳态响应计算中的调整[J];油气田地面工程;2002年06期
6 金基铎;三线性滞回系统的稳态响应[J];力学季刊;2003年01期
7 魏建萍;苏先樾;;弹性方柱中波的传播规律 Ⅰ.频谱、群速度曲线和稳态响应[J];北京大学学报(自然科学版);2007年05期
8 管迪;陈乐生;;含间隙迟滞非线性系统的稳态响应[J];机械工程学报;2008年10期
9 胡明勇;王安稳;章向明;;约束阻尼层合板的稳态响应[J];应用力学学报;2010年01期
10 刘林超;杨骁;;基于多孔介质理论的饱和土体中圆形隧道洞稳态响应分析[J];应用力学学报;2009年01期
相关会议论文 前4条
1 熊柳杨;张国策;丁虎;陈立群;;屈曲黏弹性梁受迫振动的稳态响应[A];第十四届全国非线性振动暨第十一届全国非线性动力学和运动稳定性学术会议摘要集与会议议程[C];2013年
2 徐自力;刘雅琳;;基于时频域交互算法的干摩擦阻尼叶片稳态响应分析[A];第九届全国振动理论及应用学术会议论文摘要集[C];2007年
3 代胡亮;王琳;;多尺度法分析输液管涡激振动的稳态响应[A];第九届全国动力学与控制学术会议会议手册[C];2012年
4 齐辉;潘向南;赵元博;;弹性带形域内SH波对圆柱孔洞的稳态响应[A];中国力学大会——2013论文摘要集[C];2013年
本文编号:2232819
本文链接:https://www.wllwen.com/kejilunwen/lxlw/2232819.html