当前位置:主页 > 科技论文 > 力学论文 >

Birkhoff动力学函数成为约束系统第一积分的判别方法

发布时间:2018-09-18 20:54
【摘要】:基于Birkhoff动力学函数包含系统全部运动信息的观点,借鉴Hamilton系统导出第一积分的思路,结合自治、半自治Birkhoff方程的定义和Birkhoff张量反对称性的特点,研究判别给定Birkhoff动力学函数是否是系统第一积分的方法.主要结论包括:证明自治系统的Birkhoff函数必是系统的第一积分,而半自治系统的Birkhoff函数一定不是系统的第一积分;针对非自治Birkhoff系统,导出循环积分、类循环积分以及Hojman积分,并讨论积分之间的关系.最后,通过两个例子来说明结论的具体应用.
[Abstract]:Based on the view that the Birkhoff dynamic function contains all the system motion information, the first integral is derived from the Hamilton system, and the definition of autonomous, semi-autonomous Birkhoff equation and the anti-symmetry of Birkhoff Zhang Liang are combined. The method of judging whether a given Birkhoff dynamic function is the first integral of the system is studied. The main conclusions are as follows: it is proved that the Birkhoff function of the autonomous system must be the first integral of the system, and the Birkhoff function of the semi-autonomous system must not be the first integral of the system, and for the nonautonomous Birkhoff system, the cyclic integral, the quasi-cyclic integral and the Hojman integral are derived. The relationship between integrals is also discussed. Finally, two examples are given to illustrate the concrete application of the conclusion.
【作者单位】: 江南大学理学院;辽宁大学物理学院;北京理工大学宇航学院;
【基金】:国家自然科学基金(批准号:11472124,11401259,11272050) 江南大学自主科研计划(批准号:JUSRP11530)资助的课题~~
【分类号】:O316

【相似文献】

相关期刊论文 前10条

1 樊守芳;付强;初秀娟;王鹏;;第一积分中值函数渐近值的注记[J];齐齐哈尔大学学报;2008年01期

2 樊守芳;;第一积分中值函数渐近值的探讨[J];绥化学院学报;2008年04期

3 莫処;;勒襄特多项式的推广[J];山东大学学报(自然科学);1957年01期

4 梅凤翔;非完整系统的第一积分与其变分方程特解的联系[J];力学学报;1991年03期

5 梅凤翔;非完整系统的第一积分与积分不变量[J];科学通报;1991年11期

6 罗绍凯 ,陈书勤;非线性非完整系统相对运动的第一积分与积分不变量[J];河南大学学报(自然科学版);1992年03期

7 朱海平,,梅凤翔;非完整系统的第一积分与积分不变量[J];北京理工大学学报;1995年01期

8 周建荣;黄民海;;第一积分方法及Fitzhugh-Nagumo方程新的行波解(英文)[J];广西师范学院学报(自然科学版);2010年02期

9 梅凤翔,吴惠彬;Birkhoff系统的第一积分与积分不变量[J];科学通报;1999年21期

10 张宏彬;相对论性Birkhoff系统的第一积分和积分不变量[J];安徽师范大学学报(自然科学版);2001年04期

相关博士学位论文 前1条

1 王振华;改进微变空间上的多体力学理论与应用研究[D];哈尔滨工业大学;2007年



本文编号:2249080

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/lxlw/2249080.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户45d8b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com