曲梁自由振动微分方程的解耦解法及验证
发布时间:2018-12-30 11:57
【摘要】:基于欧拉-伯努利梁模型,建立圆弧曲梁的自由振动微分方程,通过理论推导给出微分方程的解耦解法,使用有限元方法对理论方法进行验证。结果表明,在低频范围内,采用理论方法计算得到的曲梁模型的模态频率与使用有限元方法计算得到的模态频率的差值不到2%,证明了曲梁振动微分方程解耦解法的正确性。
[Abstract]:Based on the Euler-Bernoulli beam model, the free vibration differential equation of circular curved beam is established. The decoupling solution of the differential equation is derived and the finite element method is used to verify the theoretical method. The results show that in the low frequency range, the difference between the modal frequency of the curved beam model calculated by the theoretical method and that of the modal frequency calculated by the finite element method is less than 2, which proves the correctness of the decoupling method for the differential equation of the curved beam vibration.
【作者单位】: 中国核动力研究设计院反应堆工程研究所;
【分类号】:O302
本文编号:2395550
[Abstract]:Based on the Euler-Bernoulli beam model, the free vibration differential equation of circular curved beam is established. The decoupling solution of the differential equation is derived and the finite element method is used to verify the theoretical method. The results show that in the low frequency range, the difference between the modal frequency of the curved beam model calculated by the theoretical method and that of the modal frequency calculated by the finite element method is less than 2, which proves the correctness of the decoupling method for the differential equation of the curved beam vibration.
【作者单位】: 中国核动力研究设计院反应堆工程研究所;
【分类号】:O302
【相似文献】
相关期刊论文 前6条
1 金基铎,赵永健,林影;输流管的振动微分方程及单点弹性支承悬臂管的稳定性分析[J];沈阳航空工业学院学报;1995年02期
2 张悉德,张玮;浸入水中输运流体管道振动微分方程的建立[J];青岛化工学院学报;1994年01期
3 吕淑玲;弦振动实验的若干讨论[J];淮北煤师院学报(自然科学版);2002年02期
4 陈雄一,蒋廷松;一维振动的直接求解[J];零陵师范高等专科学校学报;1999年03期
5 黄君毅;王勇;罗旗帜;;Timoshenko薄壁梁双向弯曲与扭转耦合的振动方程及求解[J];佛山科学技术学院学报(自然科学版);2009年01期
6 ;[J];;年期
,本文编号:2395550
本文链接:https://www.wllwen.com/kejilunwen/lxlw/2395550.html