当前位置:主页 > 科技论文 > 力学论文 >

非保守动力学的Herglotz广义变分原理的研究进展(英文)

发布时间:2021-06-10 06:25
  综述非保守动力学系统的Herglotz广义变分原理及其对称性与守恒量研究的最新进展。以Lagrange力学、Hamilton力学和Birkhoff力学作为研究框架,介绍其Herglotz广义变分原理、Herglotz型动力学方程、Noether对称性与守恒量,以及对时滞动力学、分数阶动力学、时间尺度动力学的推广,并提出若干问题作为未来研究的建议。 

【文章来源】:Transactions of Nanjing University of Aeronautics and Astronautics. 2020,37(01)EICSCD

【文章页数】:14 页

【文章目录】:
0 Introduction
1 Lagrangian Mechanics of Her-glotz Type
    1.1 Herglotz’s generalized variational principle
    1.2 Euler-Lagrange equations of Herglotz type
    1.3 Noether symmetry for the Lagrange system of Herglotz type
    1.4 Generalization to nonholonomic dynamics
    1.5 Generalization to time-delay dynamics
    1.6 Generalization to fractional dynamics
    1.7 Generalization to time-scale dynamics
    1.8 Other generalization
    1.9 Problems to be further studied in Lagrang-ian mechanics of Herglotz type
2 Hamiltonian Mechanics of Her-glotz Type
    2.1 Herglotz’s generalized variational principle
    2.2 Hamilton canonical equations of Herglotz type
    2.3 Noether symmetry for the Hamilton system of Herglotz type
    2.4 Generalization to time-delay dynamics
    2.5 Generalization to fractional dynamics
    2.6 Generalization to time-scale dynamics
    2.7 Problems to be further studied in Hamilto-nian machanics of Herglotz type
3 Birkhoffian Mechanics of Her-glotz Type
    3.1 Herglotz’s generalized variational principle
    3.2 Birkhoff’s equations of Herglotz type
    3.3 Noether symmetry for the Birkhoff system of Herglotz type
    3.4 Generalization to constrained Birkhoff sys-tem
    3.5 Generalization of time-delay dynamics
    3.6 Generalization to fractional dynamics
    3.7 Generalization to time-scale dynamics
    3.8 Problems to be further studied in Birkhof-fian mechanics of Herglotz type
4 Conclusions


【参考文献】:
期刊论文
[1]Conservation laws for Birkhoffian systems of Herglotz type[J]. 张毅,田雪.  Chinese Physics B. 2018(09)
[2]Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem[J]. 田雪,张毅.  Communications in Theoretical Physics. 2018(09)
[3]时间尺度上Herglotz变分原理及其Noether定理[J]. 田雪,张毅.  力学季刊. 2018(02)
[4]Noether Theorem for Generalized Birkhoffian Systems with Time Delay[J]. Zhai Xianghua,Zhang Yi.  Transactions of Nanjing University of Aeronautics and Astronautics. 2018(03)
[5]Generalized Chaplygin equations for nonholonomic systems on time scales[J]. 金世欣,张毅.  Chinese Physics B. 2018(02)
[6]Methods of reduction for Lagrange systems on time scales with nabla derivatives[J]. 金世欣,张毅.  Chinese Physics B. 2017(01)
[7]相空间中非保守系统的Herglotz广义变分原理及其Noether定理[J]. 张毅.  力学学报. 2016(06)
[8]Birkhoff力学的研究进展[J]. 梅凤翔,吴惠彬,李彦敏,陈向炜.  力学学报. 2016(02)
[9]基于联合Caputo导数的分数阶Hamilton力学和分数阶正则变换(英文)[J]. 张毅.  苏州科技学院学报(自然科学版). 2014(01)
[10]含时滞的非保守系统动力学的Noether对称性[J]. 张毅,金世欣.  物理学报. 2013(23)



本文编号:3221865

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/lxlw/3221865.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3acdd***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com