非保守动力学的Herglotz广义变分原理的研究进展(英文)
发布时间:2021-06-10 06:25
综述非保守动力学系统的Herglotz广义变分原理及其对称性与守恒量研究的最新进展。以Lagrange力学、Hamilton力学和Birkhoff力学作为研究框架,介绍其Herglotz广义变分原理、Herglotz型动力学方程、Noether对称性与守恒量,以及对时滞动力学、分数阶动力学、时间尺度动力学的推广,并提出若干问题作为未来研究的建议。
【文章来源】:Transactions of Nanjing University of Aeronautics and Astronautics. 2020,37(01)EICSCD
【文章页数】:14 页
【文章目录】:
0 Introduction
1 Lagrangian Mechanics of Her-glotz Type
1.1 Herglotz’s generalized variational principle
1.2 Euler-Lagrange equations of Herglotz type
1.3 Noether symmetry for the Lagrange system of Herglotz type
1.4 Generalization to nonholonomic dynamics
1.5 Generalization to time-delay dynamics
1.6 Generalization to fractional dynamics
1.7 Generalization to time-scale dynamics
1.8 Other generalization
1.9 Problems to be further studied in Lagrang-ian mechanics of Herglotz type
2 Hamiltonian Mechanics of Her-glotz Type
2.1 Herglotz’s generalized variational principle
2.2 Hamilton canonical equations of Herglotz type
2.3 Noether symmetry for the Hamilton system of Herglotz type
2.4 Generalization to time-delay dynamics
2.5 Generalization to fractional dynamics
2.6 Generalization to time-scale dynamics
2.7 Problems to be further studied in Hamilto-nian machanics of Herglotz type
3 Birkhoffian Mechanics of Her-glotz Type
3.1 Herglotz’s generalized variational principle
3.2 Birkhoff’s equations of Herglotz type
3.3 Noether symmetry for the Birkhoff system of Herglotz type
3.4 Generalization to constrained Birkhoff sys-tem
3.5 Generalization of time-delay dynamics
3.6 Generalization to fractional dynamics
3.7 Generalization to time-scale dynamics
3.8 Problems to be further studied in Birkhof-fian mechanics of Herglotz type
4 Conclusions
【参考文献】:
期刊论文
[1]Conservation laws for Birkhoffian systems of Herglotz type[J]. 张毅,田雪. Chinese Physics B. 2018(09)
[2]Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem[J]. 田雪,张毅. Communications in Theoretical Physics. 2018(09)
[3]时间尺度上Herglotz变分原理及其Noether定理[J]. 田雪,张毅. 力学季刊. 2018(02)
[4]Noether Theorem for Generalized Birkhoffian Systems with Time Delay[J]. Zhai Xianghua,Zhang Yi. Transactions of Nanjing University of Aeronautics and Astronautics. 2018(03)
[5]Generalized Chaplygin equations for nonholonomic systems on time scales[J]. 金世欣,张毅. Chinese Physics B. 2018(02)
[6]Methods of reduction for Lagrange systems on time scales with nabla derivatives[J]. 金世欣,张毅. Chinese Physics B. 2017(01)
[7]相空间中非保守系统的Herglotz广义变分原理及其Noether定理[J]. 张毅. 力学学报. 2016(06)
[8]Birkhoff力学的研究进展[J]. 梅凤翔,吴惠彬,李彦敏,陈向炜. 力学学报. 2016(02)
[9]基于联合Caputo导数的分数阶Hamilton力学和分数阶正则变换(英文)[J]. 张毅. 苏州科技学院学报(自然科学版). 2014(01)
[10]含时滞的非保守系统动力学的Noether对称性[J]. 张毅,金世欣. 物理学报. 2013(23)
本文编号:3221865
【文章来源】:Transactions of Nanjing University of Aeronautics and Astronautics. 2020,37(01)EICSCD
【文章页数】:14 页
【文章目录】:
0 Introduction
1 Lagrangian Mechanics of Her-glotz Type
1.1 Herglotz’s generalized variational principle
1.2 Euler-Lagrange equations of Herglotz type
1.3 Noether symmetry for the Lagrange system of Herglotz type
1.4 Generalization to nonholonomic dynamics
1.5 Generalization to time-delay dynamics
1.6 Generalization to fractional dynamics
1.7 Generalization to time-scale dynamics
1.8 Other generalization
1.9 Problems to be further studied in Lagrang-ian mechanics of Herglotz type
2 Hamiltonian Mechanics of Her-glotz Type
2.1 Herglotz’s generalized variational principle
2.2 Hamilton canonical equations of Herglotz type
2.3 Noether symmetry for the Hamilton system of Herglotz type
2.4 Generalization to time-delay dynamics
2.5 Generalization to fractional dynamics
2.6 Generalization to time-scale dynamics
2.7 Problems to be further studied in Hamilto-nian machanics of Herglotz type
3 Birkhoffian Mechanics of Her-glotz Type
3.1 Herglotz’s generalized variational principle
3.2 Birkhoff’s equations of Herglotz type
3.3 Noether symmetry for the Birkhoff system of Herglotz type
3.4 Generalization to constrained Birkhoff sys-tem
3.5 Generalization of time-delay dynamics
3.6 Generalization to fractional dynamics
3.7 Generalization to time-scale dynamics
3.8 Problems to be further studied in Birkhof-fian mechanics of Herglotz type
4 Conclusions
【参考文献】:
期刊论文
[1]Conservation laws for Birkhoffian systems of Herglotz type[J]. 张毅,田雪. Chinese Physics B. 2018(09)
[2]Noether Symmetry and Conserved Quantities of Fractional Birkhoffian System in Terms of Herglotz Variational Problem[J]. 田雪,张毅. Communications in Theoretical Physics. 2018(09)
[3]时间尺度上Herglotz变分原理及其Noether定理[J]. 田雪,张毅. 力学季刊. 2018(02)
[4]Noether Theorem for Generalized Birkhoffian Systems with Time Delay[J]. Zhai Xianghua,Zhang Yi. Transactions of Nanjing University of Aeronautics and Astronautics. 2018(03)
[5]Generalized Chaplygin equations for nonholonomic systems on time scales[J]. 金世欣,张毅. Chinese Physics B. 2018(02)
[6]Methods of reduction for Lagrange systems on time scales with nabla derivatives[J]. 金世欣,张毅. Chinese Physics B. 2017(01)
[7]相空间中非保守系统的Herglotz广义变分原理及其Noether定理[J]. 张毅. 力学学报. 2016(06)
[8]Birkhoff力学的研究进展[J]. 梅凤翔,吴惠彬,李彦敏,陈向炜. 力学学报. 2016(02)
[9]基于联合Caputo导数的分数阶Hamilton力学和分数阶正则变换(英文)[J]. 张毅. 苏州科技学院学报(自然科学版). 2014(01)
[10]含时滞的非保守系统动力学的Noether对称性[J]. 张毅,金世欣. 物理学报. 2013(23)
本文编号:3221865
本文链接:https://www.wllwen.com/kejilunwen/lxlw/3221865.html